521
Views
11
CrossRef citations to date
0
Altmetric
Articles

Study of the molecular array behaviours and interfacial activities of green surfactant alkyl polyglycoside and the mixed systems with other surfactants on oil–water interface

, , &
Pages 1107-1115 | Received 23 Jan 2017, Accepted 09 May 2017, Published online: 13 Jun 2017

References

  • Nelson RC. Application of surfactants in the petroleum industry. J Am Oil Chem Soc. 1982;59:823A–826A.10.1007/BF02634448
  • Czajka A, Hazell G, Eastoe J. Surfactants at the design limit. Langmuir. 2015;31:8205–8217.10.1021/acs.langmuir.5b00336
  • Mulligan CN. Environmental applications for biosurfactants. Environ Pollut. 2005;133:183–198.10.1016/j.envpol.2004.06.009
  • Heertje I, Roijers EC, Hendrickx HACM. Liquid crystalline phases in the structuring of food products. LWT − Food Sci Technol. 1998;31:387–396.10.1006/fstl.1998.0369
  • Banat MI, Makkar SR, Cameotra SS. Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol. 2000;53:495–508.10.1007/s002530051648
  • Sun Y, Li Y, Li C, et al. Molecular array behavior and synergistic effect of sodium alcohol ether sulphate and carboxyl betaine/sulfobetaine in foam film under high salt conditions. Colloids Surf A. 2015;480:138–148.10.1016/j.colsurfa.2015.02.042
  • Zhang S, Zhu P, Sun Y, et al. Study of the molecular array behaviour of laurel alkanolamide at the oil–water interface and the high interfacial activity enhanced by an inherent synergistic effect. RSC Adv. 2014;4:41831–41837.10.1039/C4RA04438J
  • Hirose Y, Yui H, Sawada T. Second harmonic generation-based coherent vibrational spectroscopy for a liquid interface under the nonresonant pump condition. J Phys Chem B. 2005;109:13063–13066.10.1021/jp0524476
  • Fujiwara K, Watarai H. Total internal reflection resonance Raman microspectroscopy for the liquid/liquid interface. ion-association adsorption of cationic Mn(III) porphine. Langmuir. 2003;19:2658–2664.10.1021/la026119y
  • Messmer MC, Conboy JC, Richmond GL. Observation of molecular ordering at the liquid−liquid interface by resonant sum frequency generation. J Am Chem Soc. 1995;117:8039–8040.10.1021/ja00135a032
  • Watry MR, Richmond GL. Comparison of the adsorption of linear alkanesulfonate and linear alkylbenzenesulfonate surfactants at liquid interfaces. J Am Chem Soc. 2000;122:875–883.10.1021/ja9917666
  • Conboy JC, Messmer MC, Richmond GL. Dependence of alkyl chain conformation of simple ionic surfactants on head group functionality as studied by vibrational sum-frequency spectroscopy. J Phys Chem B. 1997;101:6724–6733.10.1021/jp971867v
  • Conboy JC, Messmer MC, Richmond GL. Effect of alkyl chain length on the conformation and order of simple ionic surfactants adsorbed at the D2O/CCl4 interface as studied by sum-frequency vibrational spectroscopy. Langmuir. 1998;14:6722–6727.10.1021/la980132u
  • Deguillard E, Pannacci N, Creton B, et al. Interfacial tension in oil–water–surfactant systems: on the role of intra-molecular forces on interfacial tension values using DPD simulations. J Chem Phys. 2013;138:144102.10.1063/1.4799888
  • Li Y, He X, Cao X, et al. Mesoscopic simulation study on the efficiency of surfactants adsorbed at the liquid/liquid interface. Mol Simul. 2005;31:1027–1033.10.1080/08927020500411948
  • Mikami Y, Liang Y, Matsuoka T, et al. molecular dynamics simulations of asphaltenes at the oil−water interface: from nanoaggregation to thin-film formation. Energy Fuels. 2013;27:1838–1845.10.1021/ef301610q
  • Moore FG, Richmond GL. Integration or segregation: how do molecules behave at oil/water interfaces? Acc Chem Res. 2008;41:739–748.10.1021/ar7002732
  • Li C, Li Y, Yuan R, et al. Study of the microcharacter of ultrastable aqueous foam stabilized by a kind of flexible connecting bipolar-headed surfactant with existence of magnesium ion. Langmuir. 2013;29:5418–5427.10.1021/la4011373
  • Iglauer S, Wu Y, Shuler P, et al. Analysis of the influence of alkyl polyglycoside surfactant and cosolvent structure on interfacial tension in aqueous formulations versus n-octane. Tenside Surf Det. 2010;47:87–97.10.3139/113.110056
  • Iglauer S, Wu Y, Shuler P, et al. Alkyl polyglycoside surfactant–alcohol cosolvent formulations for improved oil recovery. Colloids Surf A. 2009;339:48–59.10.1016/j.colsurfa.2009.01.015
  • Minamikawa H, Hato M. Headgroup effects on phase behavior and interfacial properties of β-3, 7-dimethyloctylglycoside/water systems. Chem Phys Lipid. 2005;134:151–160.10.1016/j.chemphyslip.2005.01.001
  • Ahmad N, Ramsch R, Llinàs M, et al. Influence of nonionic branched-chain alkyl glycosides on a model nano-emulsion for drug delivery systems. Colloids Surf B. 2014;115:267–274.10.1016/j.colsurfb.2013.12.013
  • Boyd BJ, Drummond CJ, Krodkiewska I, et al. How chain length, headgroup polymerization, and anomeric configuration govern the thermotropic and lyotropic liquid crystalline phase behavior and the air−water interfacial adsorption of glucose-based surfactants. Langmuir. 2000;16:7359–7367.10.1021/la991573w
  • Huang J, Li J, Feng Y, et al. Investigation of modified sodium alginate-Alkyl glycoside interactions in aqueous solutions and at the oil–water interface. RSC Adv. 2016;6:51068–51077.10.1039/C6RA03650C
  • Premarathne EP, Karunaratne DN, Perera AD. Controlled release of diclofenac sodium in glycolipid incorporated micro emulsions. Int J Pharm. 2016;511:890–898.10.1016/j.ijpharm.2016.07.047
  • Wang ZN, Li GZ, Zhang GY, et al. Molecular interaction in binary surfactant mixtures containing alkyl polyglycoside. J Colloid Interface Sci. 2005;290:598–602.10.1016/j.jcis.2005.04.057
  • Mandal A, Kar S. A thermodynamic assessment of micellization for a mixture of sodium dodecyl benzene sulfonate and Tween 80 surfactants for ultralow interfacial tension. Fluid Phase Equilib. 2016;408:212–222.10.1016/j.fluid.2015.09.007
  • Liu Z-Y, Li Z-Q, Song X-W, et al. Dynamic interfacial tensions of binary nonionic–anionic and nonionic surfactant mixtures at water–alkane interfaces. Fuel. 2014;135:91–98.10.1016/j.fuel.2014.06.031
  • Kayali IH, Liu S, Miller CA. Microemulsions containing mixtures of propoxylated sulfates with slightly branched hydrocarbon chains and cationic surfactants with short hydrophobes or PO chains. Colloids Surf A. 2010;354:246–251.10.1016/j.colsurfa.2009.07.058
  • Zhu Y, Xu G, Gong H, et al. Production of ultra-low interfacial tension between crude oil and mixed brine solution of Triton X-100 and its oligomer Tyloxapol with cetyltrimethylammonium bromide induced by hydrolyzed polyacrylamide. Colloids Surf A. 2009;332:90–97.10.1016/j.colsurfa.2008.09.012
  • Poorgholami-Bejarpasi N, Hashemianzadeh M, Mousavi-khoshdel SM, et al. Role of interaction energies in the behavior of mixed surfactant systems: a lattice Monte Carlo simulation. Langmuir. 2010;26:13786–13796.10.1021/la100330c
  • Sun H, Ren P, Fried JR. The COMPASS force field: parameterization and validation for phosphazenes. Comput Theor Polym Sci. 1998;8:229–246.10.1016/S1089-3156(98)00042-7
  • Teppen BJ, Rasmussen K, Bertsch PM, et al. Molecular dynamics modeling of clay minerals. 1. Gibbsite, kaolinite, pyrophyllite, and beidellite. J Phys Chem B. 1997;101:1579–1587.10.1021/jp961577z
  • Heinz H, Suter UW. Atomic charges for classical simulations of polar systems. J Phys Chem B. 2004;108:18341–18352.10.1021/jp048142t
  • Yuan S, Ma L, Zhang X, et al. Molecular dynamics studies on monolayer of cetyltrimethylammonium bromide surfactant formed at the air/water interface. Colloids Surf A. 2006;289:1–9.10.1016/j.colsurfa.2006.03.055
  • Zhao T, Xu G, Yuan S, et al. Molecular dynamics study of alkyl benzene sulfonate at air/water interface: effect of inorganic salts. J Phys Chem B. 2010;114:5025–5033.10.1021/jp907438x
  • Yan H, Guo XL, Yuan SL, et al. Molecular dynamics study of the effect of calcium ions on the monolayer of SDC and SDSn surfactants at the vapor/liquid interface. Langmuir. 2011;27:5762–5771.10.1021/la1049869
  • Ewald PP. Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann Phys. 1921;369:253−287.
  • Hummer G, Pratt LR, García AE. Molecular theories and simulation of ions and polar molecules in water. J Phys Chem A. 1998;102:7885–7895.10.1021/jp982195r
  • Beck TL, Paulaitis ME, Pratt LR. The potential distribution theorem and models of molecular solutions. Cambridge: Cambridge University Press; 2006.
  • Nosé S. A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys. 1984;81:511–519.10.1063/1.447334
  • Hoover WG. Canonical dynamics: equilibrium phase-space distributions. Phys Rev A. 1985;31:1695−1697.10.1103/PhysRevA.31.1695
  • Bandyopadhyay S, Chanda J. Monolayer of monododecyl diethylene glycol surfactants adsorbed at the air/water interface: a molecular dynamics study. Langmuir. 2003;19:10443–10448.10.1021/la0348315
  • Rekvig L, Hafskjold B, Smit B. Molecular simulations of surface forces and film rupture in oil/water/surfactant systems. Langmuir. 2004;20:11583–11593.10.1021/la048071p
  • Jang SS, Jang YH, Kim Y-H, et al. molecular dynamics simulation of amphiphilic bistable [2]rotaxane langmuir monolayers at the air/water interface. J Am Chem Soc. 2005;127:14804–14816.10.1021/ja0531531
  • Jang SS, Lin S-T, Maiti PK, et al. Molecular dynamics study of a surfactant-mediated decane-water interface: effect of molecular architecture of alkyl benzene sulfonate. J Phys Chem B. 2004;108:12130–12140.10.1021/jp048773n
  • Xu J, Zhang Y, Chen H, et al. Effect of surfactant headgroups on the oil/water interface: an interfacial tension measurement and simulation study. J Mol Struct. 2013;1052:50–56.10.1016/j.molstruc.2013.07.049
  • Diep P, Jordan KD, Johnson JK, et al. CO2−fluorocarbon and CO2−hydrocarbon interactions from first-principles calculations. J Phys Chem A. 1998;102:2231–2236.10.1021/jp9730306
  • Chaitanya VSV, Senapati S. Self-assembled reverse micelles in supercritical CO2 entrap protein in native state. J Am Chem Soc. 2008;130:1866–1870.10.1021/ja0739234
  • Hu D, Sun S, Yuan P, et al. Evaluation of CO2-philicity of poly(vinyl acetate) and poly(vinyl acetate-alt-maleate) copolymers through molecular modeling and dissolution behavior measurement. J Phys Chem B. 2015;119:3194–3204.10.1021/jp5130052
  • Boys SF, Bernardi F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys. 2006;19:553–566.
  • Frisch M, Trucks G, Schlegel HB, et al. Gaussian 09, revision A. 02. Vol. 19. Wallingford, CT: Gaussian,; 2009. p. 227−238.
  • Rosen MJ, Sulthana SB. The Interaction of Alkylglycosides with Other Surfactants. J Colloid Interface Sci. 2001;239:528–534.10.1006/jcis.2001.7537

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.