140
Views
2
CrossRef citations to date
0
Altmetric
Articles

Finite element analysis of the Poisson–Boltzmann equation coupled with chemical equilibriums: redistribution and transport of protons in nanophase separated polymeric acid–base proton exchange membranes

, &
Pages 1307-1314 | Received 14 Feb 2017, Accepted 23 May 2017, Published online: 16 Jun 2017

References

  • Kreuer K. On the complexity of proton conduction phenomena. Solid State Ionics. 2000;136–137:149–160.10.1016/S0167-2738(00)00301-5
  • Yang C, Costamagna P, Srinivasan S, et al. Approaches and technical challenges to high temperature operation of proton exchange membrane fuel cells. J Power Sources. 2001;103:1–9.10.1016/S0378-7753(01)00812-6
  • Zhang J, Xie Z, Zhang J, et al. High temperature PEM fuel cells. J Power Sources. 2006;160:872–891.10.1016/j.jpowsour.2006.05.034
  • Yan L, Zhu S, Ji X, et al. Proton hopping in phosphoric acid solvated NAFION membrane: a molecular simulation study. J Phys Chem B. 2007;111:6357–6363.10.1021/jp071005m
  • Singh B, Duong NMH, Henkensmeier D, et al. Influence of different side-groups and cross-links on phosphoric acid doped radel-based polysulfone membranes for high temperature polymer electrolyte fuel cells. Electrochim Acta. 2017;224:306–313.10.1016/j.electacta.2016.12.088
  • He Y, Zhang H, Li Y, et al. Synergistic proton transfer through nanofibrous composite membranes by suitably combining proton carriers from the nanofiber mat and pore-filling matrix. J Mater Chem A. 2015;3:21832–21841.10.1039/C5TA03601A
  • Li G, Zhao C, Li X, et al. Novel side-chain-type sulfonated diphenyl-based poly(arylene ether sulfone)s with a hydrogen-bonded network as proton exchange membranes. Polym Chem. 2015;6:5911–5920.10.1039/C5PY00700C
  • Fu Y, Manthiram A, Guiver MD. Blend membranes based on sulfonated poly(ether ether ketone) and polysulfone bearing benzimidazole side groups for proton exchange membrane fuel cells. Electrochem Commun. 2006;8:1386–1390.10.1016/j.elecom.2006.06.018
  • Fu Y, Manthiram A, Guiver MD. Acid–base blend membranes based on 2-amino-benzimidazole and sulfonated poly(ether ether ketone) for direct methanol fuel cells. Electrochem Commun. 2007;9:905–910.10.1016/j.elecom.2006.12.001
  • Wu D, Xu T, Wu L, et al. Hybrid acid–base polymer membranes prepared for application in fuel cells. J Power Sources. 2009;186:286–292.10.1016/j.jpowsour.2008.10.028
  • Niu R, Kong L, Zheng L, et al. Novel graphitic carbon nitride nanosheets/sulfonated poly(ether ether ketone) acid–base hybrid membrane for vanadium redox flow battery. J Membr Sci. 2017;525:220–228.10.1016/j.memsci.2016.10.049
  • Zhang YP, Yue BH, Han SY, et al. Synergetic proton conducting effect in acid–base composite of phosphonic acid functionalized polystyrene and triazolyl functionalized polystyrene. RSC Adv. 2014;4:33702–33712.10.1039/C4RA04514A
  • Yue BH, Yan LM, Han SY, et al. Proton transport pathways in an acid–base complex consisting of a phosphonic acid group and a 1,2,3-triazolyl group. J Phys Chem B. 2013;117:7941–7949.10.1021/jp404684e
  • Xie LQ, Liu HT, Han SY, et al. Hydrogen bond and proton transport in acid–base complexes and amphoteric molecules by density functional theory calculations and 1H and 31P nuclear magnetic resonance spectroscopy. J Phys Chem B. 2013;117:16345–16355.10.1021/jp4094386
  • Yue B, Zeng G, Zhang Y, et al. Improved performance of acid–base composite of phosphonic acid functionalized polysulfone and triazolyl functionalized polysulfone for PEM fuel cells. Solid State Ionics. 2017;300:10–17.10.1016/j.ssi.2016.11.011
  • Ahmadzadeh K. Interaction potential energy between finite rectangular cellulose nanofibrils [ dissertation]. Stockholm (SE): KTH Royal Institute of Technology; 2015.
  • Zhang X, Zhang J, Shi Y, et al. Potential of mean force between like-charged nanoparticles: many-body effect. Sci Rep. 2016;6:1–12.
  • Xie F, Turesson M, Woodward CE, et al. Theoretical predictions of structures in dispersions containing charged colloidal particles and non-adsorbing polymers. Phys Chem Chem Phys. 2016;18:11422–11434.10.1039/C5CP07814H
  • Bossa GV, Roth J, Bohinc K, et al. The apparent charge of nanoparticles trapped at a water interface. Soft Matter. 2016;12:4229–4240.10.1039/C6SM00334F
  • Li B, Wen J, Zhou S. Mean-field theory and computation of electrostatics with ionic concentration dependent dielectrics. Commun Math Sci. 2016;14:249–271.10.4310/CMS.2016.v14.n1.a10
  • Ozden E, Tari I. Proton exchange membrane fuel cell degradation: a parametric analysis using computational fluid dynamics. J Power Sources. 2016;304:64–73.10.1016/j.jpowsour.2015.11.042
  • Jahnke T, Futter G, Latz A, et al. Performance and degradation of proton exchange membrane fuel cells: state of the art in modeling from atomistic to system scale. J Power Sources. 2016;304:207–233.10.1016/j.jpowsour.2015.11.041
  • Cwirko EH, Carbonell RG. Interpretation of transport coefficients in Nafion using a parallel pore model. J Membr Sci. 1992;67:227–247.10.1016/0376-7388(92)80027-H
  • Weber AZ, Newman J. Modeling transport in polymer-electrolyte fuel cells. Chem Rev. 2004;104:4679–4726.10.1021/cr020729l
  • Kreuer KD, Paddison SJ, Spohr E, et al. Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology. Chem Rev. 2004;104:4637–4678.10.1021/cr020715f
  • Eikerling M, Kornyshev A, Kuznetsov A, et al. Mechanisms of proton conductance in polymer electrolyte membranes. J Phys Chem B. 2001;105:3646–3662.10.1021/jp003182s
  • Eikerling M, Kornyshev A. Proton transfer in a single pore of a polymer electrolyte membrane. J Electroanal Chem. 2001;502:1–14.10.1016/S0022-0728(00)00368-5
  • Qiao R, Aluru N. Ion concentrations and velocity profiles in nanochannel electroosmotic flows. J Chem Phys. 2003;118:4692–4701.10.1063/1.1543140
  • Qiao R, Aluru NR. Multiscale simulation of electroosmotic transport using embedding techniques. Int J Multiscale Comput. 2004;2:1–16.
  • Keh HJ, Ma HC. The effect of diffusioosmosis on water transport in polymer electrolyte fuel cells. J Power Sources. 2008;180:711–718.10.1016/j.jpowsour.2008.02.072
  • Berg P, Ladipo K. Exact solution of an electro-osmotic flow problem in a cylindrical channel of polymer electrolyte membranes. Proc R Soc A Math Phys Eng Sci. 2009;465:2663–2679.10.1098/rspa.2009.0067
  • Chen Y, Ni Z, Wang G, et al. Electroosmotic flow in nanotubes with high surface charge densities. Nano Lett. 2008;8:42–48.10.1021/nl0718566
  • Commer P, Cherstvy A, Spohr E, et al. The effect of water content on proton transport in polymer electrolyte membranes. Fuel Cells. 2002;2:127–136.10.1002/fuce.200290011
  • Hu Y, Li X, Yan L, Yue, B. Improving the overall characteristics of proton exchange membranes via nanophase separation techniques: a progress review. Fuel Cells. 2017;2017:3–17.
  • Hinderberger D, Spiess HW, Jeschke G. Radial counterion distributions in polyelectrolyte solutions determined by EPR spectroscopy. Europhys Lett. 2005;70:102.10.1209/epl/i2004-10459-y
  • Wu Y, Wang F, Tan Z. Calculating potential of mean force between like-charged nanoparticles: a comprehensive study on salt effects. Phys Lett A. 2013;377:1911–1919.10.1016/j.physleta.2013.05.011
  • Baker NA, Sept D, Joseph S, et al. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci. 2001;98:10037–10041.10.1073/pnas.181342398
  • Eikerling M, Kornyshev A, Stimming U. Electrophysical properties of polymer electrolyte membranes: a random network model. J Phys Chem B. 1997;101:10807–10820.10.1021/jp972288t
  • Paddison SJ, Reagor DW, Zawodzinski TA Jr. High frequency dielectric studies of hydrated Nafion. J Electroanal Chem. 1998;459:91–97.10.1016/S0022-0728(98)00321-0
  • Karimi G, Li X. Electroosmotic flow through polymer electrolyte membranes in PEM fuel cells. J Power Sources. 2005;140:1–11.10.1016/j.jpowsour.2005.02.009
  • Sata N, Eberman K, Eberl K, et al. Mesoscopic fast ion conduction in nanometre-scale planar heterostructures. Nature. 2000;408:946–949.10.1038/35050047
  • Han SY, Yue BH, Yan LM. Improving the performances of poly(vinylphosphonic acid) by compositing or copolymerization with poly(4-(alpha-methyl)vinyl-1H-1,2,3-triazole). Electrochim Acta. 2014;138:256–263.10.1016/j.electacta.2014.06.121

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.