472
Views
17
CrossRef citations to date
0
Altmetric
Articles

Effect of the surface charge density of nanoparticles on their translocation across pulmonary surfactant monolayer: a molecular dynamics simulation

, , &
Pages 85-93 | Received 05 Jan 2017, Accepted 05 Jun 2017, Published online: 25 Jun 2017

References

  • Bailey MM, Berkland CJ. Nanoparticle formulations in pulmonary drug delivery. Med Res Rev. 2009;29(1):196–212.10.1002/med.v29:1
  • Patton JS, Byron PR. Inhaling medicines: delivering drugs to the body through the lungs. Nat Rev Drug Discovery. 2007;6(1):67–74.10.1038/nrd2153
  • Nel A, Xia T, Mädler L, et al. Toxic potential of materials at the nanolevel. Science. 2006;311(5761):622–627.10.1126/science.1114397
  • Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113(7):823–839.10.1289/ehp.7339
  • Zuo YY, Veldhuizen RA, Neumann AW, et al. Current perspectives in pulmonary surfactant – inhibition, enhancement and evaluation. Biochim Biophys Acta. 2008;1778(10):1947–1977.10.1016/j.bbamem.2008.03.021
  • Serrano AG, Pérezgil J. Protein-lipid interactions and surface activity in the pulmonary surfactant system. Chem Phys Lipids. 2006;265(141):105–118.10.1016/j.chemphyslip.2006.02.017
  • Kuroki Y, Takahashi M, Nishitani C. Pulmonary collectins in innate immunity of the lung. Cell Microbiol. 2007;9(8):1871–1879.10.1111/cmi.2007.9.issue-8
  • Fan Q, Wang YE, Zhao X, et al. Adverse biophysical effects of hydroxyapatite nanoparticles on natural pulmonary surfactant. ACS Nano. 2011;5(8):6410–6416.10.1021/nn2015997
  • Gliga AR, Skoglund S, Wallinder IO, et al. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol. 2014;11(1):1–17.
  • Monopoli MP, Aberg C, Salvati A, et al. Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol. 2012;7(12):779–786.10.1038/nnano.2012.207
  • Fröhlich E, Meindl C, Pieber TR. Important issues in the cytotoxicity screening of nano-sized materials. EURO-NanoTox-Lett. 2012;1(1):1–6.
  • Duro N, Gjika M, Siddiqui A, et al. POPC bilayers supported on nanoporous substrates: specific effects of silica-type surface hydroxylation and charge density. Langmuir. 2016;32(26):6766–6774.
  • Yang Y, Gao N, Hu Y, et al. Gold nanoparticle-enhanced photodynamic therapy: effects of surface charge and mitochondrial targeting. Ther Deliv. 2015;6(3):307–321.10.4155/tde.14.115
  • Fröhlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomed. 2012;7(11):5577–5591.10.2147/IJN
  • Liu S, Qiao S, Li L, et al. Surface charge-conversion polymeric nanoparticles for photodynamic treatment of urinary tract bacterial infections. Nanotechnology. 2015;26(49):495602.10.1088/0957-4484/26/49/495602
  • Lin X, Wang C, Wang M, et al. Computer simulation of the effects of nanoparticles’ adsorption on the properties of supported lipid bilayer. J Phys Chem C. 2012;116:17960–17968.10.1021/jp305784z
  • Hong S, Leroueil PR, Janus EK, et al. Interaction of polycationic polymers with supported lipid bilayers and cells:  nanoscale hole formation and enhanced membrane permeability. Bioconjug Chem. 2006;17(3):728–734.10.1021/bc060077y
  • Hyldgaard KL, Thomas F, Dong M. Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy. Nat Commun. 2016;7:12447.
  • Kim JA, Åberg C, Salvati A, et al. Role of cell cycle on the cellular uptake and dilution of nanoparticles in a cell population. Nat Nanotechnol. 2012;7(1):62–68.
  • Eslami M, Nikkhah SJ, Hashemianzadeh SM, et al. The compatibility of Tacrine molecule with poly(n-butylcyanoacrylate) and Chitosan as efficient carriers for drug delivery: a molecular dynamics study. Eur J Pharm Sci Off J Eur Federation Pharm Sci. 2015;82:79–85.
  • Lindorff-Larsen K, Trbovic N, Maragakis P, et al. Structure and dynamics of an unfolded protein examined by molecular dynamics simulation. J Am Chem Soc. 2012;134(8):3787–3791.10.1021/ja209931w
  • Sachan AK, Galla HJ. Understanding the mutual impact of interaction between hydrophobic nanoparticles and pulmonary surfactant monolayer. Small. 2014;10(6):1069–1075.10.1002/smll.201300315
  • Proctor EA, Dokholyan NV. Applications of discrete molecular dynamics in biology and medicine. Curr Opin Struct Biol. 2016;37:9–13.10.1016/j.sbi.2015.11.001
  • Marrink SJ, Risselada HJ, Yefimov S, et al. The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B. 2007;111(27):7812–7824.10.1021/jp071097f
  • Monticelli L, Kandasamy SK, Periole X, et al. The MARTINI coarse-grained force field: extension to proteins. Methods Mol Biol. 2013;924(924):533–565.
  • Bakshi MS, Zhao L, Smith R, et al. Metal nanoparticle pollutants interfere with pulmonary surfactant function in vitro. Biophys J. 2008;94(3):855–868.10.1529/biophysj.107.106971
  • Zhang H, Fan Q, Wang YE, et al. Comparative study of clinical pulmonary surfactants using atomic force microscopy. Biochim Biophys Acta. 2011;1808(7):1832–1842.10.1016/j.bbamem.2011.03.006
  • Marrink SJ, Tieleman DP. Perspective on the Martini model. Chem Soc Rev. 2013;42(16):6801–6822.10.1039/c3cs60093a
  • Hu G, Jiao B, Shi X, et al. Physicochemical properties of nanoparticles regulate translocation across pulmonary surfactant monolayer and formation of lipoprotein corona. ACS Nano. 2013;7(12):10525–10533.10.1021/nn4054683
  • Lin X, Li Y, Gu N. Nanoparticle’s size effect on its translocation across a lipid bilayer: a molecular dynamics simulation. J Comput Theor Nanosci. 2010;7(1):269–276.10.1166/jctn.2010.1358
  • Sun D, Lin X, Gu N. Cholesterol affects C₆₀ translocation across lipid bilayers. Soft Matter. 2014;10(13):2160–2168.10.1039/C3SM52211C
  • Marrink SJ, de Vries AHD, Mark AE. Coarse grained model for semiquantitative lipid simulations. J Phys Chem B. 2004;108(2):750–760.10.1021/jp036508g
  • Chiu C, Shinoda W, Devane RH, et al. Effects of spherical fullerene nanoparticles on a dipalmitoyl phosphatidylcholine lipid monolayer: a coarse grain molecular dynamics approach. Soft Matter. 2012;8(37):9610–9616.10.1039/c2sm26357b
  • Lee H, Larson RG. Molecular dynamics simulations of PAMAM dendrimer-induced pore formation in DPPC bilayers with a coarse-grained model. J Phys Chem B. 2006;110(37):18204–18211.10.1021/jp0630830
  • Lee H, Larson RG. Lipid bilayer curvature and pore formation induced by charged linear polymers and dendrimers: the effect of molecular shape. J Phys Chem B. 2008;112(39):12279–12285.10.1021/jp805026m
  • Schulz M, Olubummo A, Binder WH. Beyond the lipid-bilayer: interaction of polymers and nanoparticles with membranes. Soft Matter. 2012;8(18):4849–4864.10.1039/c2sm06999g
  • Huynh L, Perrot N, Beswick V, et al. Reply to “Comment on ‘Structural properties of POPC monolayers under lateral compression: computer simulations analysis’”. Langmuir ACS J Surf Colloids. 2014;30(2):564–573.
  • Perez-Gil J, Weaver TE. Pulmonary surfactant pathophysiology: current models and open questions. Physiology. 2010;25(3):132–141.10.1152/physiol.00006.2010
  • Aramrak S, Flury M, Harsh JB, et al. Does colloid shape affect detachment of colloids by a moving air-water interface? Langmuir. 2013;29(19):5770–5780.10.1021/la400252q
  • Chatterjee N, Flury M. Effect of particle shape on capillary forces acting on particles at the air-water interface. Langmuir. 2013;29(25):7903–7911.10.1021/la4017504
  • Hess B, Kutzner C, van der Spoel D, et al. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theor Comput. 2008;4(3):435–447.10.1021/ct700301q
  • Huang C, Zhang Y, Yuan H, et al. Role of nanoparticle geometry in endocytosis: laying down to stand up. Nano Lett. 2013;13(9):4546–4550.10.1021/nl402628n
  • Li Y, Yue T, Yang K, et al. Molecular modeling of the relationship between nanoparticle shape anisotropy and endocytosis kinetics. 2012;33(19):4965–4973.
  • Kolhar P, Anselmo AC, Gupta V, et al. Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium. Proc Nat Acad Sci. 2013;110(26):10753–10758.10.1073/pnas.1308345110
  • Li Y, Gu N. Thermodynamics of charged nanoparticle adsorption on charge-neutral membranes: a simulation study. J Phys Chem B. 2010;114(8):2749–2754.10.1021/jp904550b
  • Savarala S, Ahmed S, Ilies MA, et al. Stabilization of soft lipid colloids: competing effects of nanoparticle decoration and supported lipid bilayer formation. ACS Nano. 2011;5(4):2619–2628.10.1021/nn1025884
  • Zhang Y, Lervik A, Seddon J, et al. A coarse-grained molecular dynamics investigation of the phase behavior of DPPC/cholesterol mixtures. Chem Phys Lipids. 2014;185:88–98.
  • Baoukina S, Tieleman DP. Computer simulations of phase separation in lipid bilayers and monolayers. Methods Mol Biol. 2015;1232(1232):307–322.10.1007/978-1-4939-1752-5
  • Lin X, Bai T, Zuo YY, et al. Promote potential applications of nanoparticles as respiratory drug carrier: insights from molecular dynamics simulations. Nanoscale. 2014;6(5):2759–2767.10.1039/c3nr04163h
  • Baoukina S, Mendez-Villuendas E, Tieleman DP. Molecular view of phase coexistence in lipid monolayers. J Am Chem Soc. 2012;134(42):17543–17553.10.1021/ja304792p
  • Baoukina S, Monticelli L, Risselada HJ, et al. The molecular mechanism of lipid monolayer collapse. Proc Nat Acad Sci. 2008;105(31):10803–10808.10.1073/pnas.0711563105

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.