202
Views
0
CrossRef citations to date
0
Altmetric
Articles

Biogas upgrading using single-walled carbon nanotubes by molecular simulation

, , , &
Pages 1034-1044 | Received 13 Jan 2017, Accepted 04 Jun 2017, Published online: 21 Jun 2017

References

  • Ryckebosch E, Drouillon M, Vervaeren H. Techniques for transformation of biogas to biomethane. Biomass Bioenergy. 2011;35:1633–1645.10.1016/j.biombioe.2011.02.033
  • Chen XY, Vinh-Thang H, Ramirez AA, et al. Membrane gas separation technologies for biogas upgrading. RSC Adv. 2015;5:24399–24448.10.1039/C5RA00666J
  • Alonso-Vicario A, Ochoa-Gómez JR, Gil-Río S, et al. Purification and upgrading of biogas by pressure swing adsorption on synthetic and natural zeolites. Microporous Mesoporous Mater. 2010;134:100–107.10.1016/j.micromeso.2010.05.014
  • Zhou L, Zhong LM, Su W, et al. Experimental study of removing trace H2S using solvent coated adsorbent for PSA. AIChE J. 2006;52:2066–2071.10.1002/(ISSN)1547-5905
  • Cosoli P, Ferrone M, Pricl S, et al. Hydrogen sulphide removal from biogas by zeolite adsorption part I. GCMC molecular simulations. Chem Eng J. 2008;145:86–92.
  • Yu JM, Ma YG, Balbuena PB. Evaluation of the impact of H2O, O2, and SO2 on postcombustion CO2 capture in metal-organic frameworks. Langmuir. 2012;28:8064–8071.10.1021/la3009514
  • Gholampour F, Yeganegi S. Molecular simulation study on the adsorption and separation of acidic gases in a model nanoporous carbon. Chem Eng Sci. 2014;117:426–435.10.1016/j.ces.2014.07.003
  • Wang WJ, Peng X, Cao DP. Capture of trace sulfur gases from binary mixtures by single-walled carbon nanotube arrays: a molecular simulation study. Environ Sci Technol. 2011;45:4832–4838.10.1021/es1043672
  • Chen JJ, Li WW, Li XL, et al. Improving biogas separation and methane storage with multi layer graphene nanostructure via layer spacing optimization and lithium doping: a molecular simulation investigation. Environ Sci Technol. 2012;46:10341–10348.10.1021/es301774g
  • Esteves I, Lopes M, Nunes P, et al. Adsorption of natural gas and biogas components on activated carbon. Sep Purif Technol. 2008;62:281–296.10.1016/j.seppur.2008.01.027
  • Huang LL, Zhang LZ, Shao Q, et al. Simulations of binary mixture adsorption of carbon dioxide and methane in carbon nanotubes: temperature, pressure, and pore size effects. J Phys Chem C. 2007;111:11912–11920.10.1021/jp067226u
  • Zhao JJ. Gas adsorption of carbon nanotubes: tube-molecule interaction and technological applications. Curr Nanosci. 2005;1:169–176.10.2174/1573413054065312
  • Peng X, Zhou J, Wang WC, et al. Computer simulation for storage of methane and capture of carbon dioxide in carbon nanoscrolls by expansion of interlayer spacing. Carbon. 2010;48:3760–3768.10.1016/j.carbon.2010.06.038
  • Furmaniak S, Terzyk AP, Kowalczyk P, et al. Separation of CO2-CH4 mixtures on defective single walled carbon nanohorns-tip does matter. Phys Chem Chem Phys. 2013;15:16468–16476.10.1039/c3cp52342j
  • Lu LH, Wang SS, Müller EA, et al. Adsorption and separation of CO2/CH4 mixtures using nanoporous adsorbents by molecular simulation. Fluid Phase Equilib. 2014;362:227–234.10.1016/j.fluid.2013.10.013
  • Molyanyan E, Aghamiri S, Talaie MR, et al. Experimental study of pure and mixtures of CO2 and CH4 adsorption on modified carbon nanotubes. Int J Environ Sci Technol. 2016;13:2001–2010.10.1007/s13762-016-0989-0
  • Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56–58.10.1038/354056a0
  • Liu L, Nicholson D, Bhatia SK. Impact of H2O on CO2 separation from natural gas: comparison of carbon nanotubes and disordered carbon. J Phys Chem C. 2015;119:407–419.10.1021/jp5099987
  • Li MH, Hsieh T, Doong R, et al. Tuning the adsorption capability of multi-walled carbon nanotubes to polar and non-polar organic compounds by surface oxidation. Sep Purif Technol. 2013;117:98–103.10.1016/j.seppur.2013.03.019
  • Motshekga SC, Pillai SK, Ray SS, et al. Recent trends in the microwave-assisted synthesis of metal oxide nanoparticles supported on carbon nanotubes and their applications. J Nanomater. 2012;2012:1–15.
  • Vairavapandian D, Vichchulada P, Lay MD. Preparation and modification of carbon nanotubes: review of recent advances and applications in catalysis and sensing. Anal Chim Acta. 2008;626:119–129.10.1016/j.aca.2008.07.052
  • Liang ZJ, Marshall M, Chaffee AL. CO2 adsorption, selectivity and water tolerance of pillared-layer metal organic frameworks. Microporous Mesoporous Mater. 2010;132:305–310.10.1016/j.micromeso.2009.11.026
  • Yu JM, Balbuena PB. Water effects on postcombustion CO2 capture in Mg-MOF-74. J Phys Chem C. 2013;117:3383–3388.10.1021/jp311118x
  • Karra JR, Grabicka BE, Huang Y, et al. Adsorption study of CO2, CH4, N2, and H2O on an interwoven copper carboxylate metal-organic framework (MOF-14). J Colloid Interface Sci. 2013;392:331–336.10.1016/j.jcis.2012.10.018
  • Xu J, Xing W, Wang HF, et al. Monte Carlo simulation study of the halogenated MIL-47(V) frameworks: influence of functionalization on H2S adsorption and separation properties. J Mater Sci. 2016;51:2307–2319.10.1007/s10853-015-9539-2
  • Liu Y, Liu J, Lin YS, et al. Effects of water vapor and trace gas impurities in flue gas on CO2/N2 separation using ZIF-68. J Phys Chem C. 2014;118:6744–6751.10.1021/jp4113969
  • Liu B, Smit B. Molecular simulation studies of separation of CO2/N2, CO2/CH4, and CH4/N2 by ZIFs. J Phys Chem C. 2010;114:8515–8522.10.1021/jp101531m
  • Mohammad SA, Gasem KAM. Modeling the competitive adsorption of CO2 and water at high pressures on wet coals. Energy Fuels. 2012;26:557–568.10.1021/ef201422e
  • Billemont P, Coasne B, Weireld GD. An experimental and molecular simulation study of the adsorption of carbon dioxide and methane in nanoporous carbons in the presence of water. Langmuir. 2011;27:1015–1024.10.1021/la103107t
  • Feng WG, Kwon S, Borguet E, et al. Adsorption of hydrogen sulfide onto activated carbon fibers: effect of pore structure and surface chemistry. Environ Sci Technol. 2005;39:9744–9749.10.1021/es0507158
  • Xu H, Tong MM, Wu D, et al. Computational study of metal-organic frameworks for removing H2S from natural gas. Acta Phys Chim Sin. 2015;31:41–U290.
  • Xu D, Xiao P, Zhang J, et al. Effects of water vapour on CO2 capture with vacuum swing adsorption using activated carbon. Chem Eng J. 2013;230:64–72.10.1016/j.cej.2013.06.080
  • Huang HL, Zhang WJ, Liu DH, et al. Understanding the effect of trace amount of water on CO2 capture in natural gas upgrading in metal-organic frameworks: a molecular simulation study. Ind Eng Chem Res. 2012;51:10031–10038.10.1021/ie202699r
  • Heuchel M, Davies GM, Buss E, et al. Adsorption of carbon dioxide and methane and their mixtures on an activated carbon: simulation and experiment. Langmuir. 1999;15:8695–8705.10.1021/la9904298
  • Li JR, Kuppler RJ, Zhou HC. Selective gas adsorption and separation in metal-organic frameworks. Chem Soc Rev. 2009;38:1477–1504.10.1039/b802426j
  • Wang QY, Johnson JK. Molecular simulation of hydrogen adsorption in single-walled carbon nanotubes and idealized carbon slit pores. J Chem Phys. 1999;110:577–586.10.1063/1.478114
  • Liu L, Nicholson D, Bhatia SK. Adsorption of CH4 and CH4/CO2 mixtures in carbon nanotubes and disordered carbons: a molecular simulation study. Chem Eng Sci. 2015;121:268–278.10.1016/j.ces.2014.07.041
  • Huang LL, Zhang LZ, Shao Q, et al. Molecular dynamics simulation study of the structural characteristics of water molecules confined in functionalized carbon nanotubes. J Phys Chem B. 2006;110:25761–25768.10.1021/jp064676d
  • Ulrich E, Lalith P, Max LB, et al. A smooth particle mesh Ewald method. J Chem Phys. 1995;103:8577–8593.
  • Gupta A, Chempath S, Sanborn MJ, et al. Object-oriented programming paradigms for molecular modeling. Mol Simul. 2003;29:29–46.10.1080/0892702031000065719
  • Wang SS, Lu LH, Lu XH, et al. Adsorption of binary CO2/CH4 mixtures using carbon nanotubes: effects of confinement and surface functionalization. Sep Sci Technol. 2016;51:1079–1092.10.1080/01496395.2016.1150296

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.