70
Views
1
CrossRef citations to date
0
Altmetric
Articles

A salt-bridge switch in the molecular recognition between RS receptor and RGD ligand from the ABEEM σπ molecular dynamics simulations

, , , , &
Pages 1045-1055 | Received 16 Jan 2017, Accepted 27 Jun 2017, Published online: 12 Jul 2017

References

  • Yoshida N, Imai T, Phongphanphanee S, et al. Molecular recognition in biomolecules studied by statistical-mechanical integral-equation theory of liquids. J Phys Chem B. 2009;113:873–886.
  • Albelda SM, Buck CA. Integrins and other cell adhesion molecules. FASEB J. 1990;4:2868–2880.
  • Hynes RO. Integrins: a family of cell surface receptors. Cell. 1987;48:549–554.
  • Ruoslahti E, Pierschbacher MD. New perspectives in cell adhesion: RGD and integrins. Science. 1987;238:491–497.
  • Gardner JM, Hynes RO. Interaction of fibronectin with its receptor on platelets. Cell. 1985;42:439–448.
  • Pierschbacher MD, Ruoslathi E, Sundelin J, et al. The cell attachment domain of fibronectin. Determination of the primary structure. J Biol Chem. 1982;257:9593–9597.
  • Schvartz I, Seger D, Shaltiel S. Vitronectin. Int J Biochem Cell Biol. 1999;31:539–544.
  • Lawler J, Weinstein R, Hyners RO. Cell attachment to thrombospondin: the role of ARG-GLY-ASP, calcium, and integrin receptors. J Cell Biol. 1988;107:2351–2361.
  • Helfrich MH, Nesbitt SA, Dorey EL, et al. Rat osteoclasts adhere to a wide range of RGD (Arg-Gly-Asp) peptide-containing proteins, including the bone sialoproteins and fibronectin, via a beta 3 integrin. J Bone Miner Res. 1992;7:335–343.
  • Haubner R, Finsinger D, Kessler H. Stereoisomeric peptide libraries and peptidomimetics for designing selective inhibitors of the αvβ3 integrin for a new cancer therapy. Angew Chem Int Ed. 1997;36:1374–1389.
  • Cox D, Aoki T, Seki J, et al. The pharmacology of the integrins. Med Res Rev. 1994;14:195–228.
  • Grano M, Zigrino P, Colucci S, et al. Adhesion properties and integrin expression of cultured human osteoclast-like cells. Exp Cell Res. 1994;212:209–218.
  • Liotta LA. Tumor invasion and metastases-role of the extracellular matrix: Rhoads Memorial Award lecture. Cancer Res. 1986;46:1–7.
  • Li W, Metcalf DG, Gorelik R, et al. A push–pull mechanism for regulating integrin function. Proc Natl Acad Sci. 2005;102:1424–1429.
  • Fischer E. Einfluss der Configuration auf die Wirkung der Enzyme. Ber Dtsch Chem Ges. 1894;27:2985–2993.
  • Koshland DE. Application of a theory of enzyme specificity to protein synthesis. Proc Natl Acad Sci. 1958;44:98–104.
  • Kumar S, Ma B, Tsai C, et al. Folding and binding cascades: dynamic landscapes and population shifts. Protein Sci. 2000;9:10–19.
  • Monod J, Wyman J, Changeux JP. On the nature of allosteric transitions: a plausible model. J Mol Biol. 1965;12:88–118.
  • Haubner R, Gratias R, Diefenbach B, et al. Structural and functional aspects of RGD-containing cyclic pentapeptides as highly potent and selective Integrin αvβ3 antagonists. J Am Chem Soc. 1996;118:7461–7472.
  • Brooks PC, Clark RAF, Cheresh DA. Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science. 1994;264:569–571.
  • Brooks PC, Montgomery AMP, Rosenfeld M, et al. Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell. 1994;79:1157–1164.
  • Rensing S, Schrader T. The first synthetic receptor for the RGD sequence. Org Lett. 2002;4:2161–2164.
  • Schrader T. Strong binding of alkylguanidinium ions by molecular tweezers: an artificial selective arginine receptor molecule with a biomimetic recognition pattern. Chem Eur J. 1997;3:1537–1541.
  • Barril X, Aleman C, Orozco M, et al. Salt bridge interactions: stability of the ionic and neutral complexes in the gas phase, in solution, and in proteins. Proteins Struct Funct Genet. 1998;32:67–79.
  • Wang S, Yang S, Yin Y, et al. Molecular dynamics simulations reveal the disparity in specific recognition of GCC-box by AtERFs transcription factors super family in Arabidopsis. J Mol Recognit. 2009;22:474–479.
  • Gandini D, Gogioso L, Bolognesi M, et al. Patterns of ionizable sidechains interactions in protein structures. Proteins Struct Funct Genet. 1996;24:439–449.
  • Riordan JF, McElvany KRD, Borders CL. Arginyl residues: anion recognition sites in enzymes. Science. 1977;195:884–886.
  • Tormo J, Blaas D, Parry NR, et al. Crystal structure of a human rhinovirus neutralizing antibody complexed with a peptide derived from viral capsid protein VP2. EMBO J. 1994;13:2247–2256.
  • Raumann BE, Rould MA, Pabo CO, et al. DNA recognition by β-sheets in the Arc repressor-operator crystal structure. Nature. 1994;367:754–757.
  • Brown BM, Milla ME, Smith TL, et al. Scanning mutagenesis of the Arc repressor as a functional probe of operator recognition. Nat Struct Biol. 1994;1:164–168.
  • Soler N, Fourmy D, Yoshizawa S. Structural insight into a molecular switch in tandem winged-helix motifs from elongation factor SelB. J Mol Biol. 2007;370:728–741.
  • Law CJ, Almqvist J, Bernstein A, et al. Salt-bridge dynamics control substrate-induced conformational change in the membrane transporter GlpT. J Mol Biol. 2008;378:828–839.
  • Horovitz A, Serrano L, Avron B, et al. Strength and co-operativity of contributions of surface salt bridges to protein stability. J Mol Biol. 1990;216:1031–1044.
  • Zhao DX, Liu C, Wang FF, et al. Development of a polarizable force field using multiple fluctuating charges per atom. J Chem Theory Comput. 2010;6:795–804.
  • Wang FF, Zhao DX, Gong LD. Ab initio and ABEEM/MM fluctuation charge model studies of dimethyl phosphate anion in a microhydrated environment. Theoret Chem Acc. 2009;124:139–150.
  • Yang ZZ, Zhang Q. Study of peptide conformation in terms of the ABEEM/MM method. J Comput Chem. 2006;27:1–10.
  • Betts MJ, Sternberg MJ. An analysis of conformational changes on protein-protein association: Implications for predictive docking. Protein Eng Des Sel. 1999;12:271–283.
  • Conte L, Chothia C, Janin J. The atomic structure of protein-protein recognition sites. J Mol Biol. 1999;285:2177–2198.
  • Kimura SR, Brower RC, Vajda S, et al. Dynamical view of the positions of key side chains in protein-protein recognition. Biophys J. 2001;80:635–642.
  • Wang FF, Zhao DX, Yang ZZ. Theoretical studies of uracil–(H2O)n (n = 1–7) clusters by ab initio and ABEEMσπ/MM fluctuating charge model. Chem Phys. 2009;360:141–149.
  • Yang ZZ, Qi SF, Zhao DX, et al. Insight into mechanism of formation of C8 adducts in carcinogenic reactions of arylnitrenium ions with purine nucleosides. J Phys Chem B. 2009;113:254–259.
  • Yang ZZ, Qian P. A study of N-methylacetamide in water clusters: Based on atom-bond electronegativity equalization method fused into molecular mechanics. J Chem Phys. 2006;125:064311.
  • Yang ZZ, Cui BQ. Atomic charge calculation of metallobiomolecules in terms of the ABEEM method. J Chem Theory Comput. 2007;3:1561–1568.
  • Li X, Yang ZZ. Hydration of Li+-ion in atom-bond electronegativity equalization method-7P water: a molecular dynamics simulation study. J Chem Phys. 2005;122:84514.
  • Li X, Yang ZZ. Study of lithium cation in water clusters: based on atom-bond electronegativity equalization method fused into molecular mechanics. J Phys Chem A. 2005;109:4102–4111.
  • Yang ZZ, Li X. Molecular-dynamics simulations of alkaline-earth metal cations in water by atom-bond electronegativity equalization method fused into molecular mechanics. J Chem Phys. 2005;123:94507.
  • Yang ZZ, Wang CS. Atom–bond electronegativity equalization method. 1. Calculation of the charge distribution in large molecules. J Phys Chem A. 1997;101:6315–6321.
  • Chelli R, Procacci P. A transferable polarizable electrostatic force field for molecular mechanics based on the chemical potential equalization principle. J Chem Phys. 2002;117:9175–9189.
  • Yang ZZ, Wu Y, Zhao DX. Atom-bond electronegativity equalization method fused into molecular mechanics. I. A seven-site fluctuating charge and flexible body water potential function for water clusters. J Chem Phys. 2004;120:2541–2557.
  • Wang CS, Yang ZZ. Atom-bond electronegativity equalization method. II. Lone-pair electron model. J Chem Phys. 1999;110:6189–6197.
  • Kollman PA, Massova I, Reyes C, et al. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res. 2000;33:889–897.
  • Gohlke H, Kiel C, Case DA. Insights into protein–protein binding by binding free energy calculation and free energy decomposition for the Ras–Raf and Ras–RalGDS complexes. J Mol Biol. 2003;330:891–913.
  • Thepchatri P, Eliseo T, Cicero DO, et al. Relationship among ligand conformations in solution, in the solid state, and at the Hsp90 Binding Site: geldanamycin and radicicol. J Am Chem Soc. 2007;129:3127–3134.
  • Wu C, Wang ZX, Lei HX, et al. Dual binding modes of Congo red to amyloid protofibril surface observed in molecular dynamics simulations. J Am Chem Soc. 2007;129:1225–1232.
  • Qiu D, Shenkin PS, Hollinger FP, et al. The GB/SA continuum model for solvation. A fast analytical method for the calculation of approximate born radii. J Phys Chem A. 1997;101:3005–3014.
  • Still WC, Tempczyk A, Hawley RC, et al. Semianalytical treatment of solvation for molecular mechanics and dynamics. J Am Chem Soc. 1990;112:6127–6129.
  • Richards FM. Annual review of biophysics and bioengineering. Annu Rev Biophys Bioeng. 1977;6:151–176.
  • Go N, Noguti T, Nishikawa T. Dynamics of a small globular protein in terms of low-frequency vibrational modes. Proc Nat Acad Sci. 1983;80:3696–3700.
  • Levitt M, Sander C, Stern PS. The normal modes of a protein: native bovine pancreatic trypsin inhibitor. Int J Quantum Chem. 1983;24:181–199.
  • Brooks B, Karplus M. Harmonic dynamics of proteins: normal modes and fluctuations in bovine pancreatic trypsin inhibitor. Proc Natl Acad Sci. 1983;80:6571–6575.
  • Chong LT, Duan Y, Wang L, et al. Molecular dynamics and free-energy calculations applied to affinity maturation in antibody 48G7. Proc Natl Acad Sci. 1999;96:14330–14335.
  • Andricioaei I, Karplus M. On the calculation of entropy from covariance matrices of the atomic fluctuations. J Chem Phys. 2001;115:6289–6292.
  • Manuel R, Carles FC, Tim M, et al. A consensus view of protein dynamics. Proc Natl Acad Sci USA. 2007;3:796–801.
  • Wereszczynski J, McCammon JA. Statistical mechanics and molecular dynamics in evaluating thermodynamic properties of biomolecular recognition. Q Rev Biophys. 2012;45:1–25.
  • Giovanni MP, Andrea D, Sabrina P, et al. Modeling the multivalent recognition between dendritic molecules and DNA: Understanding how ligand ‘sacrifice’ and screening can enhance binding. J Am Chem Soc. 2009;131:9686–9694.
  • Chen W, Chang CE, Gilson MK. Concepts in receptor optimization: targeting the RGD peptide. J Am Chem Soc. 2006;128:4675–4684.
  • Qian P, Lu LN, Song W, et al. Study of water clusters in the n = 2−34 size regime, based on the ABEEM/MM model. Theoret Chem Acc. 2009;123:487–500.
  • Wu Y, Yang ZZ. Atom-bond electronegativity equalization method fused into molecular mechanics. II. A seven-site fluctuating charge and flexible body water potential function for liquid water. J Phys Chem A. 2004;108:7563–7576.
  • Berendsen HJC, Postma JPM, van Gunsteren WF, et al. Molecular dynamics with coupling to an external bath. J Chem Phys. 1984;81:3684–3690.
  • Messias AC, Sattler M. Structural basis of single-stranded RNA recognition. Acc Chem Res. 2004;37:279–287.
  • Levy Y, Onuchic JN. Mechanism of protein assembly: Lessons from minimalist models. Acc Chem Res. 2006;39:135–142.
  • Nguyen B, Neidle S, Wilson WD. A role for water molecules in DNA−ligand minor groove recognition. Acc Chem Res. 2009;42:11–21.
  • Leung DH, Bergman RG, Raymond KN. Enthalpy–entropy compensation reveals solvent reorganization as a driving force for supramolecular encapsulation in water. J Am Chem Soc. 2008;130:2798–2805.
  • Jorgensen WL, Tirado-Rives J. The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J Am Chem Soc. 1988;110:1657–1666.
  • Yang LJ, Tan CH, Hsieh MJ, et al. New-generation amber united-atom force field. J Phys Chem B. 2006;110:13166–13176.
  • Chang CA, McLaughlin WA, Baron R, et al. Entropic contributions and the influence of the hydrophobic environment in promiscuous protein-protein association. Proc Natl Acad Sci. 2008;105:7456–7461.
  • Houk KN, Leach AG, Kim SP. Binding affinities of host-guest, protein-ligand, and protein-transition-state complexes. Angew Chem Int Ed. 2003;42:4872–4897.
  • Xiong JP, Stehle T, Zhang RG, et al. Crystal structure of the extracellular segment of integrin αvβ3 in complex with an Arg-Gly-Asp ligand. Science. 2002;296:151–155.
  • Humphrey W, Dalke A, Schulten KVMD. Visual molecular dynamics. J Mol Graph. 1996;14:33–38.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.