111
Views
3
CrossRef citations to date
0
Altmetric
Articles

pH-mediated gating and formate transport mechanism in the Escherichia coli formate channel

, &
Pages 1300-1306 | Received 13 Feb 2017, Accepted 04 Jul 2017, Published online: 18 Jul 2017

References

  • Giacomini KM, Huang SM, Tweedie DJ, et al. Membrane transporters in drug development. Nat Rev Drug Discov. 2010;9(3):215–236.10.1038/nrd3028
  • Diallinas G. Understanding transporter specificity and the discrete appearance of channel-like gating domains in transporters. Front Pharmacol. 2014;5. DOI:10.3389/fphar.2014.00207
  • Roux B, Bernèche S, Egwolf B, et al. Ion selectivity in channels and transporters. J Gen Physiol. 2011;137(5):415–426.10.1085/jgp.201010577
  • Suppmann B, Sawers G. Isolation and characterization of hypophosphite-resistant mutants of Escherichia coli: identification of the FocA protein, encoded by the pfl operon, as a putative formate transporter. Mol Microbiol. 1994;11(5):965–982.10.1111/mmi.1994.11.issue-5
  • Saier MH, Eng BH, Fard S, et al. Phylogenetic characterization of novel transport protein families revealed by genome analyses. Biochim Biophys Acta, Biomembr. 1999;1422(1):1–56.
  • Lü W, Du J, Schwarzer NJ, et al. The formate/nitrite transporter family of anion channels. Biol Chem. 2013;394(6):715–727.
  • Wang Y, Huang Y, Wang J, et al. Structure of the formate transporter FocA reveals a pentameric aquaporin-like channel. Nature. 2009;462(7272):467–472.10.1038/nature08610
  • Waight AB, Love J, Wang DN. Structure and mechanism of a pentameric formate channel. Nat Struct Mol Biol. 2010;17(1):31–37.10.1038/nsmb.1740
  • Lü W, Du J, Wacker T, et al. pH-dependent gating in a FocA formate channel. Science. 2011;332(6027):352–354.
  • Falke D, Schulz K, Doberenz C, et al. Unexpected oligomeric structure of the FocA formate channel of Escherichia coli: a paradigm for the formate–nitrite transporter family of integral membrane proteins. FEMS Microbiol Lett. 2010;303(1):69–75.10.1111/fml.2010.303.issue-1
  • Ostmeyer J, Chakrapani S, Pan AC, et al. Recovery from slow inactivation in K+ channels is controlled by water molecules. Nature. 2013;501(7465):121–124.10.1038/nature12395
  • Fowler PW, Sansom MS. The pore of voltage-gated potassium ion channels is strained when closed. Nat Commun. 2013;4:1872.10.1038/ncomms2858
  • Kopfer DA, Song C, Gruene T, et al. Ion permeation in K+ channels occurs by direct Coulomb knock-on. Science. 2014;346(6207):352–355.10.1126/science.1254840
  • Pothula KR, Solano CJ, Kleinekathöfer U. Simulations of outer membrane channels and their permeability. Biochim Biophys Acta, Biomembr. 2016;1858(7):1760–1771.10.1016/j.bbamem.2015.12.020
  • Acosta-Gutierrez S, Scorciapino MA, Bodrenko I, et al. filtering with electric field: The case of E. coli porins. J Phys Chem Lett. 2015;6(10):1807-1812.10.1021/acs.jpclett.5b00612
  • Furini S, Domene C. Computational studies of transport in ion channels using metadynamics. Biochim Biophys Acta, Biomembr. 2016;1858(7):1733–1740.10.1016/j.bbamem.2016.02.015
  • Padhi S, Khan N, Jameel S, et al. Molecular dynamics simulations reveal the HIV-1 Vpu transmembrane protein to form stable pentamers. PLoS One. 2013;8(11):e79779.10.1371/journal.pone.0079779
  • Padhi S, Burri RR, Jameel S, et al. Atomistic detailed mechanism and weak cation-conducting activity of HIV-1 Vpu revealed by free energy calculations. PLoS One. 2014;9(11):e112983.10.1371/journal.pone.0112983
  • Ramakrishna S, Padhi S, Priyakumar UD. Modeling the structure of SARS 3a transmembrane protein using a minimum unfavorable contact approach. J Chem Sci. 2015;127(12):2159–2169.10.1007/s12039-015-0982-z
  • Padhi S, Priyakumar UD. Ion hydration dynamics in conjunction with a hydrophobic gating mechanism regulates ion permeation in p7 Viroporin from hepatitis C virus. J Phys Chem B. 2015;119(20):6204–6210.10.1021/acs.jpcb.5b02759
  • Padhi S, Priyakumar UD. Cooperation of hydrophobic gating, knock-on effect, and ion binding determines ion selectivity in the p7 channel. J Phys Chem B. 2016;120(19):4351–4356.10.1021/acs.jpcb.6b00684
  • Padhi S, Priyakumar UD. Urea–aromatic stacking and concerted urea transport: conserved mechanisms in urea transporters revealed by molecular dynamics. J Chem Theory Comput. 2016;12(10):5190–5200.10.1021/acs.jctc.6b00602
  • Padhi S, Priyakumar UD. Microsecond simulation of human aquaporin 2 reveals structural determinants of water permeability and selectivity. Biochim Biophys Acta, Biomembr. 2017;1859(1):10–16.10.1016/j.bbamem.2016.10.011
  • Feng Z, Hou T, Li Y. Concerted movement in pH-dependent gating of FocA from molecular dynamics simulations. J Chem Inf Model. 2012;52(8):2119–2131.10.1021/ci300250q
  • Lv X, Liu H, Ke M, et al. Exploring the pH-dependent substrate transport mechanism of FocA using molecular dynamics simulation. Biophys J. 2013;105(12):2714–2723.10.1016/j.bpj.2013.11.006
  • Jo S, Kim T, Iyer VG, et al. CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem. 2008;29(11):1859–1865.10.1002/jcc.20945
  • Wu EL, Cheng X, Jo S, et al. CHARMM-GUI Membrane Builder toward realistic biological membrane simulations. J Comput Chem. 2014;35(27):1997–2004.10.1002/jcc.v35.27
  • Ryckaert JP, Ciccotti G, Berendsen HJC. Numerical integration of the cartesian equation of motions of a system with constraints: molecular dynamics of n-alkanes. J Comp Chem. 1977;23(3):327–341.
  • Essmann U, Perera L, Berkowitz M, et al. A smooth particle mesh Ewald method. J Chem Phys. 1995;103(19):8577–8593.10.1063/1.470117
  • Phillips JC, Braun R, Wang W, et al. Scalable molecular dynamics with NAMD. J Comput Chem. 2005;26:1781–1802.10.1002/(ISSN)1096-987X
  • Best RB, Zhu X, Shim J, et al. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone ϕ, ψ and side-chain χ1 and χ2 dihedral angles. J Chem Theory Comput. 2012;8:3257–3273.10.1021/ct300400x
  • Mackerell AD Jr, Feig M, Brooks CL III. Extending the treatment of backbone energetics in protein force fields: Limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem. 2004;25:1400–1415.10.1002/jcc.v25:11
  • MacKerell AD Jr, Bashford D, Bellott M, et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B. 1998;102:3586–3616.10.1021/jp973084f
  • Klauda JB, Venable RM, Freites JA, et al. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B. 2010;114:7830–7843.10.1021/jp101759q
  • Jorgensen WL, Chandrasekhar J, Madura JD, et al. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79:926–935.10.1063/1.445869
  • Brooks BR, Brooks CL, Mackerell AD, et al. CHARMM: the biomolecular simulation program. J Comput Chem. 2009;30:1545–1614.10.1002/jcc.v30:10
  • Smart OS, Neduvelil JG, Wang X, et al. HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J Mol Graph. 1996;14:354–360.10.1016/S0263-7855(97)00009-X
  • Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996;14:33–38.10.1016/0263-7855(96)00018-5
  • Vanommeslaeghe K, Hatcher E, Acharya C, et al. CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem. 2010;31(4):671–690.
  • Kumar S, Rosenberg JMD, Bouzida DRH, et al. The weighted histogram analysis method for free-energy calculations on biomolecules. J Comput Chem. 1992;13:1011–1021.10.1002/(ISSN)1096-987X
  • Roux B. The calculation of the potential of mean force using computer simulations. Comput Phys Commun. 1995;91:275–282.10.1016/0010-4655(95)00053-I
  • Grossfield A. WHAM: the weighted histogram analysis method, version 2.0.6. https://membrane.urmc.rochester.edu/content/wham.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.