179
Views
1
CrossRef citations to date
0
Altmetric
Articles

Critical temperature estimation of bulk and confined atomic fluid using vapour−liquid interfacial free energy

Pages 156-163 | Received 15 Sep 2016, Accepted 08 Jul 2017, Published online: 21 Jul 2017

References

  • Gupta SA, Cochran HD, Cummings PT. Shear behavior of squalane and tetracosane under extreme confinement. II. Confined film structure. J Chem Phys. 1997;107:10327–10334.10.1063/1.474172
  • Bhatia S. Adsorption of binary hydrocarbon mixtures in carbon slit pores: a density functional theory study. Langmuir. 1998;14:6231–6240.10.1021/la980354s
  • Altwasser S, Welker C, Traa Y, et al. Catalytic cracking of n-octane on small-pore zeolites. Microporous Mesoporous Mater. 2005;83:345–356.10.1016/j.micromeso.2005.04.028
  • Gelb LD, Gubbins KE, Radhakrishnan R, et al. Phase separation in confined systems. Rep Prog Phys. 1999;62:1573–1659.10.1088/0034-4885/62/12/201
  • Machin WD. Temperature dependence of hysteresis and the pore size distributions of two mesoporous adsorbents. Langmuir. 1994;10:1235–1240.10.1021/la00016a042
  • Wong APY, Kim SB, Goldburg WI, et al. Phase separation, density fluctuation, and critical dynamics of N2 in aerogel. Phys Rev Lett. 1993;70:954–957.10.1103/PhysRevLett.70.954
  • Thommes M, Findenegg GH. Pore condensation and critical-point shift of a fluid in controlled-pore glass. Langmuir. 1994;10:4270–4277.10.1021/la00023a058
  • Morishige K, Shikimi M. Adsorption hysteresis and pore critical temperature in a single cylindrical pore. J Chem Phys. 1998;108:7821–7824.10.1063/1.476218
  • Zhang X, Wang W. Square-well fluids in confined space with discretely attractive wall-fluid potentials: Critical point shift. Phys Rev E. 2006;74: 062601-062601–062601-062604.
  • Vishnyakov A, Piotrovskaya EM, Brodskaya EN, et al. Critical properties of Lennard–Jones fluids in narrow slit-shaped pores. Langmuir. 2001;17:4451–4458.10.1021/la001641a
  • Vörtler HL. Vapor-liquid critical and interfacial properties of square-well fluids in slit pore. Collect Czech Chem Commun. 2008;73:518–532.10.1135/cccc20080518
  • Vörtler HL, Smith WR. Computer simulation studies of a square-well fluid in a slit pore. Spreading pressure and vapor–liquid phase equilibria using the virtual-parameter-variation method. J Chem Phys. 2000;112:5168–5174.10.1063/1.481072
  • Kofke DA. Gibbs–Duhem integration: a new method for direct evaluation of phase coexistence by molecular simulation. Mol Phys. 1993;78:1331–1336.10.1080/00268979300100881
  • Moller D, Fischer J. Vapour liquid equilibrium of a pure fluid from test particle method in combination with NpT molecular dynamics simulations. Mol Phys. 1990;69:463–473.10.1080/00268979000100341
  • Lofti A, Vrabec J, Fischer J. Vapour liquid equilibria of the Lennard–Jones fluid from the NpT plus test particle method. Mol Phys. 1992;76:1319–1333.
  • Sarkisov L, Monson PA. Computer simulations of phase equilibrium for a fluid confined in a disordered porous structure. Phys Rev E. 2000;61:7231–7234.10.1103/PhysRevE.61.7231
  • Forsman J, Woodward CE. Simulations of phase equilibria in planar slits. Mol Phys. 1997;90:637–652.10.1080/00268979709482646
  • Singh SK. Effect of surface-screening parameter of the Yukawa potential model on vapour–liquid phase coexistence and critical-point properties of confined Yukawa fluid. Mol Simul. 2016;42:413–419.10.1080/08927022.2015.1059431
  • Singh SK, Sinha A, Deo G, et al. Vapor-liquid phase coexistence, critical properties, and surface tension of confined alkanes. J Phys Chem C. 2009;113:7170–7180.10.1021/jp8073915
  • Singh SK, Saha AK, Singh JK. Molecular simulation study of vapor–liquid critical properties of a simple fluid in attractive slit pores: crossover from 3D to 2D. J Phys Chem B. 2010;114:4283–4292.10.1021/jp9109942
  • Jana S, Singh JK, Kwak SK. Vapor-liquid critical and interfacial properties of square- well fluids in slit pores. J Chem Phys. 2009;130:214707-214701–214707-214708.
  • Liu Y, Panagiotopoulos AZ, Debenedetti PG. Finite-size scaling study of the vapor-liquid critical properties of confined fluids: crossover from three dimensions to two dimensions. J Chem Phys. 2010;132:144107–144116.10.1063/1.3377089
  • Singh SK, Singh JK. Effect of pore morphology on vapor–liquid phase transition and crossover behavior of critical properties from 3D to 2D. Fluid Phase Equilib. 2011;300:182–187.10.1016/j.fluid.2010.10.014
  • Vörtler HL, Schäfer K, Smith WR. Simulation of chemical potentials and phase equilibria in two-and three-dimensional square-well fluids: finite size effects. J Phys Chem B. 2008;112:4656–4661.10.1021/jp073726r
  • Panagiotopoulos AZ. Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble. Mol Phys. 1987;61:813–826.10.1080/00268978700101491
  • Wilding NB. Critical-point and coexistence-curve properties of the Lennard–Jones fluid: a finite-size scaling study. Phys Rev E. 1995;52:602–611.10.1103/PhysRevE.52.602
  • Wilding NB, Bruce AD. Density fluctuations and field mixing in the critical fluid. J Phys Condens Matter. 1992;4:3087–3108.
  • Hunter JE, Reinhard WP. Finite size scaling behavior of the free energy barrier between coexisting phases: determination of the critical temperature and interfacial tension of the Lennard–Jones fluid J Chem Phys. 1995;103:8627–8637.
  • Caillol JM. Critical-point of the Lennard–Jones fluid: a finite-size scaling study. J Chem Phys. 1998;109:4885–4893.10.1063/1.477099
  • Singh JK, Adhikari J, Kwak SK. Vapor–liquid phase coexistence curves for Morse fluids. Fluid Phase Equilib. 2006;248:1–6.10.1016/j.fluid.2006.07.010
  • Binder K. Critical properties from Monte Carlo coarse graining and renormalization. Phys Rev Lett. 1981;47:693–696.10.1103/PhysRevLett.47.693
  • Rżysko W, Patrykiejew A, Sokolowski S, et al. Phase behavior of a two-dimensional and confined in slitlike pores square-shoulder, square-well fluid. J Chem hys. 2010;132:164702–164712.
  • Rzysko W, Borowko M. A critical behavior of the Lennard–Jones dimeric fluid in two-dimensions: a Monte Carlo study. Surf Sci. 2011;605:1219–1223.10.1016/j.susc.2011.04.005
  • Singh SK, Singh JK. A comparative study of critical temperature estimation of atomic fluid and chain molecules using fourth-order Binder cumulant and simplified scaling laws. Mol Simul. 2013;39:154–159.10.1080/08927022.2012.708755
  • Pérez-Pellitero J, Ungerer P, Mackie AD. Effective critical point location: application to thiophenes. Mol Simul. 2007;33:777–785.10.1080/08927020701209919
  • Wegner F. Corrections to scaling laws. Phys Rev B. 1972;5:4529–4536.10.1103/PhysRevB.5.4529
  • Errington JR. Direct calculation of liquid–vapor phase equilibria from transition matrix Monte Carlo simulation. J Chem Phys. 2003;118:9915–9925.10.1063/1.1572463
  • Errington JR. Evaluating surface tension using grand-canonical transition-matrix Monte Carlo simulation and finite-size scaling. Phys Rev E. 2003;67:3233.10.1103/PhysRevE.67.012102
  • Paluch AS, Shen VK, Errington JR. Comparing the use of Gibbs ensemble and grand-canonical transition-matrix Monte Carlo methods to determine phase equilibria. Indus Eng Chem Res. 2008;47:4533–4541.10.1021/ie800143n
  • Berg BA, Neuhaus T. Multicanonical ensemble: a new approach to simulate first-order phase transitions. Phys Rev Lett. 1992;68:9–12.10.1103/PhysRevLett.68.9
  • Ferrenberg AM, Swendsen RH. New Monte Carlo technique for studying phase transitions. Phys Rev Lett. 1988;61:2635–2638.10.1103/PhysRevLett.61.2635
  • Singh JK, Kwak SK. Surface tension and vapor–liquid phase coexistence of confined square-well fluid. J Chem Phys. 2007;126:24702–24709.10.1063/1.2424460
  • Goujon FM, Malfreyt PA, Boutin AH. Direct Monte Carlo simulations of the equilibrium properties of n-pentane liquid–vapor interface. J Chem Phys. 2002;116:8106–8117.10.1063/1.1468216
  • Duda Y. Square-well fluid modelling of protein liquid–vapor coexistence. J Chem Phys. 2009;130:116101.10.1063/1.3089702
  • Zhou Y, Karplus M, Ball KD, et al. The distance fluctuation criterion for melting: comparison of square-well and Morse potential models for clusters and homopolymers. J Chem Phys. 2002;116:2323–2329.10.1063/1.1426419

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.