538
Views
30
CrossRef citations to date
0
Altmetric
Articles

Investigation of model scale effects on coal pyrolysis using ReaxFF MD simulation

, , &
Pages 1081-1088 | Received 21 Jan 2017, Accepted 12 Jul 2017, Published online: 26 Jul 2017

References

  • van Duin ACT, Dasgupta S, Lorant F, et al. ReaxFF: a reactive force field for hydrocarbons. J Phys Chem A. 2001;105:9396–9409.10.1021/jp004368u
  • Russo MF Jr, van Duin ACT. Atomistic-scale simulations of chemical reactions: bridging from quantum chemistry to engineering. Nucl Instrum Methods Phys Res B. 2011;269:1549–1554.
  • Castro-Marcano F, Kamat AM, Russo MF Jr, et al. Combustion of an Illinois No. 6 coal char simulated using an atomistic char representation and the ReaxFF reactive force field. Combust Flame. 2012;159:1272–1285.10.1016/j.combustflame.2011.10.022
  • Zhang J, Weng X, Han Y, et al. The effect of supercritical water on coal pyrolysis and hydrogen production: a combined ReaxFF and DFT study. Fuel. 2013;108:682–690.10.1016/j.fuel.2013.01.064
  • Beste A. ReaxFF study of the oxidation of lignin model compounds for the most common linkages in softwood in view of carbon fiber production. J Phys Chem A. 2014;118:803–814.10.1021/jp410454q
  • Zhang T, Li X, Qiao X, et al. Initial mechanisms for an overall behavior of lignin pyrolysis through large-scale ReaxFF molecular dynamics simulations. Energy Fuels. 2016;30:3140–3150.10.1021/acs.energyfuels.6b00247
  • Zheng M, Wang Z, Li X, et al. Initial reaction mechanisms of cellulose pyrolysis revealed by ReaxFF molecular dynamics. Fuel. 2016;177:130–141.10.1016/j.fuel.2016.03.008
  • Chen B, Diao Z-J, Zhao Y-L, et al. A ReaxFF molecular dynamics (MD) simulation for the hydrogenation reaction with coal related model compounds. Fuel. 2015;154:114–122.10.1016/j.fuel.2015.03.076
  • Bhoi S, Banerjee T, Mohanty K. Insights on the combustion and pyrolysis behavior of three different ranks of coals using reactive molecular dynamics simulation. RSC Adv. 2016;6:2559–2570.10.1039/C5RA23181G
  • Salmon E, Van Duin ACT, Lorant F, et al. Early maturation processes in coal. Part 2: reactive dynamics simulations using the ReaxFF reactive force field on Morwell Brown coal structures. Org Geochem. 2009;40:1195–1209.10.1016/j.orggeochem.2009.09.001
  • Chen B, Diao Z-J, Lu H-Y. Using the ReaxFF reactive force field for molecular dynamics simulations of the spontaneous combustion of lignite with the Hatcher lignite model. Fuel. 2014;116:7–13.10.1016/j.fuel.2013.07.113
  • Zheng M, Li X, Liu J, et al. Initial chemical reaction simulation of coal pyrolysis via ReaxFF molecular dynamics. Energy Fuels. 2013;27:2942–2951.10.1021/ef400143z
  • Zheng M, Li X, Liu J, et al. Pyrolysis of Liulin coal simulated by GPU-based ReaxFF MD with cheminformatics analysis. Energy Fuels. 2014;28:522–534.10.1021/ef402140n
  • Castro-Marcano F, Lobodin VV, Rodgers RP, et al. A molecular model for Illinois No. 6 Argonne Premium coal: moving toward capturing the continuum structure. Fuel. 2012;95:35–49.10.1016/j.fuel.2011.12.026
  • Castro-Marcano F, Russo MF Jr, van Duin ACT, et al. Pyrolysis of a large-scale molecular model for Illinois No. 6 coal using the ReaxFF reactive force field. J Anal Appl Pyrol. 2014;109:79–89.10.1016/j.jaap.2014.07.011
  • Mathews JP, Chaffee AL. The molecular representations of coal – a review. Fuel. 2012;96:1–14.10.1016/j.fuel.2011.11.025
  • Mathews JP, van Duin ACT, Chaffee AL. The utility of coal molecular models. Fuel Process Technol. 2011;92:718–728.10.1016/j.fuproc.2010.05.037
  • Zheng M, Li X, Guo L. Algorithms of GPU-enabled reactive force field (ReaxFF) molecular dynamics. J Mol Graph Model. 2013;41:1–11.10.1016/j.jmgm.2013.02.001
  • Mattsson TR, Lane JMD, Cochrane KR, et al. First-principles and classical molecular dynamics simulation of shocked polymers. Phys Rev B. 2010;81:101.
  • Külaots I, Hsu A, Suuberg EM. The role of porosity in char combustion. Proc Combust Inst. 2007;31:1897–1903.10.1016/j.proci.2006.08.004
  • Chatterjee K, Stock LM, Zabransky RF. The pathways for thermal-decomposition of aryl alkyl ethers during coal pyrolysis. Fuel. 1989;68:1349–1353.10.1016/0016-2361(89)90255-X
  • Hodek W, Kirschstein J, Vanheek KH. Reactions of oxygen containing structures in coal pyrolysis. Fuel. 1991;70:424–428.10.1016/0016-2361(91)90133-U
  • Li X, Mo Z, Liu J, et al. Revealing chemical reactions of coal pyrolysis with GPU-enabled ReaxFF molecular dynamics and cheminformatics analysis. Mol Simul. 2015;41:13–27.10.1080/08927022.2014.913789
  • Liu J, Li X, Guo L, et al. Reaction analysis and visualization of ReaxFF molecular dynamics simulations. J Mol Graph Model. 2014;53:13–22.10.1016/j.jmgm.2014.07.002
  • Solomon PR, Hamblen DG. Finding order in coal pyrolysis kinetics. Prog Energy Combust Sci. 1983;9:323–361.10.1016/0360-1285(83)90012-6
  • Mueller JE, van Duin ACT, Goddard WA III. Application of the ReaxFF reactive force field to reactive dynamics of hydrocarbon chemisorption and decomposition. J Phys Chem C. 2010;114:5675–5685.10.1021/jp9089003
  • Solomon PR, Hamblen DG, Carangelo RM, et al. General-model of coal devolatilization. Energy Fuels. 1988;2:405–422.10.1021/ef00010a006
  • Serio MA, Hamblen DG, Markham JR, et al. Kinetics of volatile product evolution in coal pyrolysis - experiment and theory. Energy Fuels. 1987;1:138–152.10.1021/ef00002a002
  • Solomon PR, Serio MA, Despande GV, et al. Cross-linking reactions during coal conversion. Energy Fuels. 1990;4:42–54.10.1021/ef00019a009
  • Solomon PR, Serio MA, Suuberg EM. Coal pyrolysis: experiments, kinetic rates and mechanisms. Prog Energy Combust Sci. 1992;18:133–220.10.1016/0360-1285(92)90021-R
  • Boudou JP, Espitalie J, Bimer J, et al. Oxygen groups and oil suppression during coal pyrolysis. Energy Fuels. 1994;8:972–977.10.1021/ef00046a023
  • Gong X, Wang Z, Li S, et al. Coal pyrolysis in a laboratory-scale two-stage reactor: catalytic upgrading of pyrolytic vapors. Chem Eng Technol. 2014;37:2135–2142.10.1002/ceat.201300748
  • Solomon PR, Fletcher TH, Pugmire RJ. Progress in coal pyrolysis. Fuel. 1993;72:587–597.10.1016/0016-2361(93)90570-R
  • Solomon PR, Serio MA, Carangelo RM, et al. Very rapid coal pyrolysis. Fuel. 1986;65:182–194.10.1016/0016-2361(86)90005-0
  • Li J, Ge W, Wang W, et al. Focusing on mesoscales: from the energy-minimization multiscale model to mesoscience. Curr Opin Chem Eng. 2016;13:10–23.10.1016/j.coche.2016.07.008

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.