441
Views
14
CrossRef citations to date
0
Altmetric
Articles

Interaction between lattice dislocations and low-angle grain boundaries in Ni via molecular dynamics simulations

&
Pages 1172-1178 | Received 30 Jan 2017, Accepted 12 Jul 2017, Published online: 26 Jul 2017

References

  • Hirth JP, Lothe J. Theory of dislocations. New York (NY): Willey; 1982.
  • Sutton AP, Balluffi RW. Interfaces in crystalline materials. Oxford (OX): Oxford University Press; 1995.
  • Hughes GD, Smith SD, Pande CS, et al. Hall–Petch strengthening for the microhardness of twelve nanometer grain diameter electrodeposited nickel. Scr Metall. 1986;20:93–97.10.1016/0036-9748(86)90219-X
  • Dalla Torre F, Van Swygenhoven H, Victoria M. Nanocrystalline electrodeposited Ni: microstructure and tensile properties. Acta Mater. 2002;50:3957–3970.10.1016/S1359-6454(02)00198-2
  • Shen YF, Lu L, Lu QH, et al. Tensile properties of copper with nano-scale twins. Scr Mater. 2005;52:989–994.10.1016/j.scriptamat.2005.01.033
  • Lim LC. Slip-twin interactions in nickel at 573 K at large strains. Scr Metall. 1984;18:1139–1142.10.1016/0036-9748(84)90194-7
  • Shen Z, Wagoner RH, Clark WAT. Dislocation pile-up and grain boundary interactions in 304 stainless steel. Scr Metall. 1986;20:921–926.10.1016/0036-9748(86)90467-9
  • Lee TC, Robertson IM, Birnbaum HK. TEM in situ deformation study of the interaction of lattice dislocations with grain boundaries in metals. Philos Mag A. 1990;62:131–153.10.1080/01418619008244340
  • Lee TC, Robertson IM, Birnbaum HK. An in situ transmission electron microscope deformation study of the slip transfer mechanisms in metals. Metall Trans A. 1990;21:2437–2447.10.1007/BF02646988
  • Wang YB, Sui ML. Atomic-scale in situ observation of lattice dislocations passing through twin boundaries. Appl Phys Lett. 2009;94:021909.10.1063/1.3072801
  • Jin ZH, Gumbsch P, Ma E, et al. The interaction mechanism of screw dislocations with coherent twin boundaries in different face-centred cubic metals. Scr Mater. 2006;54:1163–1168.10.1016/j.scriptamat.2005.11.072
  • Zhu T, Li J, Samanta A, et al. Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals. Proc Nat Acad Sci. 2007;104:3031–3036.10.1073/pnas.0611097104
  • Jin ZH, Gumbsch P, Albe K, et al. Interactions between non-screw lattice dislocations and coherent twin boundaries in face-centered cubic metals. Acta Mater. 2008;56:1126–1135.10.1016/j.actamat.2007.11.020
  • Cheng Y, Mrovec M, Gumbsch P. Atomistic simulations of interactions between the 1/2 〈111〉 edge dislocation and symmetric tilt grain boundaries in tungsten. Philos Mag. 2008;88:547–560.10.1080/14786430801894577
  • Tsuru T, Shibutani Y, Kaji Y. Fundamental interaction process between pure edge dislocation and energetically stable grain boundary. Phys Rev B. 2009;79:012104.10.1103/PhysRevB.79.012104
  • Mrovec M, Elsasser C, Gumbsch P. Interactions between lattice dislocations and twin boundaries in tungsten: a comparative atomistic simulation study. Philos Mag. 2009;89:3179–3194.10.1080/14786430903246346
  • Bachurin DV, Weygand D, Gumbsch P. Dislocation–grain boundary interaction in 〈111〉 textured thin metal films. Acta Mater. 2010;58:5232–5241.10.1016/j.actamat.2010.05.037
  • Dewald MP, Curtin WA. Multiscale modelling of dislocation/grain boundary interactions. II. Screw dislocations impinging on tilt boundaries in Al. Philos Mag. 2007;87:4615–4641.10.1080/14786430701297590
  • Sangid MD, Ezaz T, Sehitoglu H. Energetics of residual dislocations associated with slip–twin and slip–GBs interactions. Mater Sci Eng A. 2012;542:21–30.10.1016/j.msea.2012.02.023
  • Sangid MD, Ezaz T, Sehitoglu H, et al. Energy of slip transmission and nucleation at grain boundaries. Acta Mater. 2011;59:283–296.10.1016/j.actamat.2010.09.032
  • Wang J, Beyerlein IJ, Tomé CN. Reactions of lattice dislocations with grain boundaries in Mg: Implications on the micro scale from atomic-scale calculations. Int J Plast. 2014;56:156–172.10.1016/j.ijplas.2013.11.009
  • Zhu T, Gao HJ. Plastic deformation mechanism in nanotwinned metals: an insight from molecular dynamics and mechanistic modeling. Scr Mater. 2012;66:843–848.10.1016/j.scriptamat.2012.01.031
  • Gu P, Dao M, Suresh S. Analysis of size-dependent slip transfer and inter-twin flow stress in a nanotwinned fcc metal. Acta Mater. 2014;67:409–417.10.1016/j.actamat.2013.12.028
  • Barnett DM, Lothe J. An image force theorem for dislocations in anisotropic bicrystals. J Phys F Metal Phys. 1974;4:1618–1635.10.1088/0305-4608/4/10/010
  • Chen ZM, Jin ZH, Gao HJ. Repulsive force between screw dislocation and coherent twin boundary in aluminum and copper. Phys Rev B. 2007;75:212104.10.1103/PhysRevB.75.212104
  • Deng C, Sansoz F. Repulsive force of twin boundary on curved dislocations and its role on the yielding of twinned nanowires. Scr Mater. 2010;63:50–53.10.1016/j.scriptamat.2010.03.005
  • Read WT, Shockley W. Dislocation models of crystal grain boundaries. Phys Rev. 1950;78:275–289.10.1103/PhysRev.78.275
  • Vitek V. On the difference between the misorientation dependences of the energies of tilt and twist boundaries. Scr Metall. 1987;21:711–714.10.1016/0036-9748(87)90390-5
  • Caturla MJ, Nieh TG, Stolken JS. Differences in deformation processes in nanocrystalline nickel with low-and high-angle boundaries from atomistic simulations. Appl Phys Lett. 2004;84:598–600.10.1063/1.1640464
  • Liu XC, Zhang HW, Lu K. Strain-induced ultrahard and ultrastable nanolaminated structure in nickel. Science. 2013;342:337–340.10.1126/science.1242578
  • Liu XC, Zhang HW, Lu K. Formation of nano-laminated structure in nickel by means of surface mechanical grinding treatment. Acta Mater. 2015;96:24–36.
  • Plimpton SJ. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117:1–19.10.1006/jcph.1995.1039
  • Purja Pun GP, Mishin Y. Development of an interatomic potential for the Ni–Al system. Philos Mag. 2009;89:3245–3267.10.1080/14786430903258184
  • Kelchner CL, Plimpton SJ, Hamilton JC. Dislocation nucleation and defect structure during surface indentation. Phys Rev B. 1998;58:11085–11088.10.1103/PhysRevB.58.11085
  • Stukowski A. Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Model Simul Mater Sci Eng. 2009;18:015012.
  • Lomer WM. A dislocation reaction in the face-centred cubic lattice. Philos Mag. 1951;42:1327–1331.10.1080/14786444108561389
  • Cheng Y, Weygand D, Gumbsch P. Simulation of small-angle tilt grain boundaries and their response to stress. Comput Mater Sci. 2009;45:783–787.10.1016/j.commatsci.2008.05.028

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.