650
Views
14
CrossRef citations to date
0
Altmetric
Articles

Evolution of bubbles in decomposition and replacement process of methane hydrate

, , ORCID Icon &
Pages 1061-1073 | Received 18 Jan 2017, Accepted 19 Jul 2017, Published online: 03 Aug 2017

References

  • Hester KC, Brewer PG. Clathrate hydrates in nature. Annu Rev Mar Sci. 2009;1:303–327.10.1146/annurev.marine.010908.163824
  • Alavi S, Ripmeester JA. Nonequilibrium adiabatic molecular dynamics simulations of methane clathrate hydrate decomposition. J Chem Phys. 2010;132(14). DOI:10.1063/1.3382341.10.1063/1.3382341
  • English NJ, Phelan GM. Molecular dynamics study of thermal-driven methane hydrate dissociation. J Chem Phys. 2009;131:074704.10.1063/1.3211089
  • Liang S, Yi L, Liang D. Molecular insights into the homogeneous melting of methane hydrates. J Phys Chem C. 2014;118:28542–28547.10.1021/jp511362s
  • Yagasaki T, Matsumoto M, Tanaka H. Effects of thermodynamic inhibitors on the dissociation of methane hydrate: a molecular dynamics study. Phys Chem Chem Phys. 2015;17:32347–32357.10.1039/C5CP03008 K
  • Myshakin EM, Jiang H, Warzinski RP, et al. Molecular dynamics simulations of methane hydrate decomposition. J Phys Chem A. 2009;113:1913–1921.10.1021/jp807208z
  • Sarupria S, Debenedetti PG. Molecular dynamics study of carbon dioxide hydrate dissociation. J Phys Chem A. 2011;115:6102–6111.10.1021/jp110868t
  • Lv Q, Li L, Li X, et al. Clathrate hydrate dissociation conditions and structure of the methane + cyclopentane + trimethylene sulfide hydrate in NaCl aqueous solution. Fluid Phase Equilib. 2016;425:305–311.10.1016/j.fluid.2016.06.020
  • English NJ, MacElroy JMD. Perspectives on molecular simulation of clathrate hydrates: progress, prospects and challenges. Chem Eng Sci. 2015;121:133–156.10.1016/j.ces.2014.07.047
  • Zhang J, Piana S, Freij-Ayoub R, et al. Molecular dynamics study of methane in water: diffusion and structure. Mol Simul. 2006;32:1279–1286.10.1080/08927020601039598
  • Yan K, Li X, Chen Z, et al. Molecular dynamics simulation of methane hydrate dissociation by depressurisation. Mol Simul. 2013;39:251–260.10.1080/08927022.2012.718437
  • Ota M, Morohashi K, Abe Y, et al. Replacement of CH4 in the hydrate by use of liquid CO2. Energy Convers Manage. 2005;46:1680–1691.10.1016/j.enconman.2004.10.002
  • Liu J, Yan Y, Liu H, et al. Understanding effect of structure and stability on transformation of CH4 hydrate to CO2 hydrate. Chem Phys Lett. 2016;648:75–80.10.1016/j.cplett.2016.02.004
  • Lee Y, Kim Y, Seo Y. Enhanced CH4 recovery induced via structural transformation in the CH4/CO2 replacement that occurs in sH hydrates. Environ Sci Technol. 2015;49:8899–8906.10.1021/acs.est.5b01640
  • Kang H, Ahn Y-H, Koh D-Y, et al. Optical interpretation of the chemical process of CH4–CO2 exchange and its application to gas hydrate production. J Phys Chem C. 2015;119:21353–21357.10.1021/acs.jpcc.5b05827
  • Iwai Y, Nakamura H, Hirata M. Molecular dynamics simulation of replacement of methane hydrate with carbon dioxide. Mol Simul. 2012;38:481–490.10.1080/08927022.2011.647817
  • Bagherzadeh SA, Alavi S, Ripmeester JA, et al. Evolution of methane during gas hydrate dissociation. Fluid Phase Equilib. 2013;358:114–120.10.1016/j.fluid.2013.08.017
  • Tung YT, Chen LJ, Chen YP, et al. In situ methane recovery and carbon dioxide sequestration in methane hydrates: a molecular dynamics simulation study. J Phys Chem B. 2011;115:15295–15302.10.1021/jp2088675
  • Jung JW, Santamarina JC. CH4–CO2 replacement in hydrate-bearing sediments: a pore-scale study. Geochem Geophys Geosyst. 2010;11. DOI:10.1029/2010GC003339
  • Bai D, Zhang D, Zhang X, et al. Origin of self-preservation effect for hydrate decomposition: coupling of mass and heat transfer resistances. Sci Rep. 2015;5. DOI:10.1038/srep1459910.1038/srep14599
  • Yagasaki T, Matsumoto M, Andoh Y, et al. Dissociation of methane hydrate in aqueous NaCl solutions. J Phys Chem B. 2014;118:11797–11804.10.1021/jp507978u
  • Bagherzadeh SA, Alavi S, Ripmeester J, et al. Formation of methane nano-bubbles during hydrate decomposition and their effect on hydrate growth. J Chem Phys. 2015;142(21). DOI:10.1063/1.492097110.1063/1.4920971
  • Yagasaki T, Matsumoto M, Andoh Y, et al. Effect of Bubble formation on the dissociation of methane hydrate in water: a molecular dynamics study. J Phys Chem B. 2014;118:1900–1906.10.1021/jp412692d
  • Ripmeester JA, Hosseini S, Englezos P, et al. Fundamentals of methane hydrate decomposition. Canadian Unconventional Resources and International Petroleum Conference. Society of Petroleum Engineers; 2010.
  • Sujith KS, Ramachandran CN. Carbon dioxide induced bubble formation in a CH4–CO2–H2O ternary system: a molecular dynamics simulation study. Phys Chem Chem Phys. 2016;18:3746–3754.10.1039/C5CP05623C
  • Uddin M, Coombe D. Kinetics of CH4 and CO2 hydrate dissociation and gas bubble evolution via MD simulation. J Phys Chem A. 2014;118:1971–1988.10.1021/jp410789j
  • Qin J, Rosenbauer RJ, Duan Z. Experimental measurements of vapor–liquid equilibria of the H2O + CO2 + CH4 ternary system. J Chem Eng Data. 2008;53:1246–1249.10.1021/je700473e
  • Geng C-Y, Hao W, Hao Z. Molecular simulation of the potential of methane reoccupation during the replacement of methane hydrate by CO2. J Phys Chem A. 2009;113:5463–5469.10.1021/jp811474 m
  • Ma ZW, Zhang P, Bao HS, et al. Review of fundamental properties of CO2 hydrates and CO2 capture and separation using hydration method. Renewable Sustainable Energy Rev. 2016;53:1273–1302.10.1016/j.rser.2015.09.076
  • Deschamps J, Dalmazzone D. Dissociation enthalpies and phase equilibrium for TBAB semi-clathrate hydrates of N2, CO2, N2+CO2 and CH4+CO2. J Therm Anal Calorim. 2009;98:113–118.10.1007/s10973-009-0399-3
  • Herri JM, Bouchemoua A, Kwaterski M, et al. Gas hydrate equilibria for CO2–N2 and CO2–CH4 gas mixtures – experimental studies and thermodynamic modelling. Fluid Phase Equilib. 2011;301:171–190.10.1016/j.fluid.2010.09.041
  • Ohgaki K, Kiyoteru T, Hiroyuki S, et al. Methane exploitation by carbon dioxide from gas hydrates – phase equilibria for CO2–CH4 mixed hydrate. J Chem Eng Jpn. 1995;29:478–483.
  • Seo YT, Lee H. Multiple-phase hydrate equilibria of the ternary carbon dioxide, methane, and water mixtures. J Phys Chem B. 2001;105:10084–10090.10.1021/jp011095+
  • Kim SH, Kang JW, Lee CS. Modeling hydrate-containing phase equilibria for mixtures with sulfur dioxide or alkali halides. Fluid Phase Equilib. 2016;417:187–196.10.1016/j.fluid.2016.02.038
  • Ning FL, Glavatskiy K, Ji Z, et al. Compressibility, thermal expansion coefficient and heat capacity of CH4 and CO2 hydrate mixtures using molecular dynamics simulations. Phys Chem Chem Phys. 2015;17:2869–2883.10.1039/C4CP04212C
  • Kadoura A, Narayanan Nair AK, Sun S. Molecular dynamics simulations of carbon dioxide, methane, and their mixture in montmorillonite clay hydrates. J Phys Chem C. 2016;120:12517–12529.10.1021/acs.jpcc.6b02748
  • Murshed MM, Kuhs WF. Kinetic studies of methane–ethane mixed gas hydrates by neutron diffraction and Raman spectroscopy. J Phys Chem B. 2009;113:5172–5180.10.1021/jp810248s
  • Wang X-H, Qin H-B, Dandekar A, et al. Hydrate phase equilibrium of H2/CH4/CO2 ternary gas mixtures and cage occupancy percentage of hydrogen molecules. Fluid Phase Equilib. 2015;403:160–166.10.1016/j.fluid.2015.06.020
  • Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1994;117:1–19.
  • Mak TCW, McMullan RK. Polyhedral clathrate hydrates. X. Structure of the double hydrate of tetrahydrofuran and hydrogen sulfide. J Chem Phys. 1965;42(8). DOI:10.1063/1.170322910.1063/1.1703229
  • Jorgensen WL, Chandrasekhar J, Madura JD. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79(2). DOI:10.1063/1.44586910.1063/1.445869
  • Harris JG, Yung KH. Carbon dioxide’s liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model. J Phys Chem A. 1995;99:12021–12024.
  • Bai D, Chen G, Zhang X, et al. Microsecond molecular dynamics simulations of the kinetic pathways of gas hydrate formation from solid surfaces. Langmuir. 2011;27:5961–5967.10.1021/la105088b
  • Jorgensen WL, Maxwell DS, Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc. 1996;118:11225–11236.
  • Duan Z, Zhang Z. Equation of state of the H2O, CO2, and H2O–CO2 systems up to 10 GPa and 2573.15 K: molecular dynamics simulations with ab initio potential surface. Geochim Cosmochim Acta. 2006;70:2311–2324.10.1016/j.gca.2006.02.009
  • Bai D, Zhang X, Chen G, et al. Replacement mechanism of methane hydrate with carbon dioxide from microsecond molecular dynamics simulations. Energy Environ Sci. 2012;5:7033–7041.10.1039/c2ee21189 k
  • Baghel VS, Kumar R, Roy S. Heat transfer calculations for decomposition of structure I methane hydrates by molecular dynamics simulation. J Phys Chem C. 2013;117:12172–12182.10.1021/jp4023772
  • Tung YT, Chen LJ, Chen YP, et al. The growth of structure I methane hydrate from molecular dynamics simulations. J Phys Chem B. 2010;114:10804–10813.10.1021/jp102874s
  • Weijs JH, Seddon JR, Lohse D. Diffusive shielding stabilizes bulk nanobubble clusters. Chem Phys Chem. 2012;13:2197–2204.10.1002/cphc.v13.8
  • Ohgaki K, Khanh NQ, Joden Y, et al. Physicochemical approach to nanobubble solutions. Chem Eng Sci. 2010;65:1296–1300.10.1016/j.ces.2009.10.003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.