97
Views
1
CrossRef citations to date
0
Altmetric
Articles

Coarse-grained simulations of modified Jeffamine ED900 micelles

&
Pages 470-477 | Received 29 Jul 2017, Accepted 09 Nov 2017, Published online: 01 Dec 2017

References

  • Bombelli C, Giansanti L, Luciani P, et al. Gemini surfactant based carriers in gene and drug delivery. Curr Med Chem. 2009;16:171–183.
  • Sineva A, Parfenova A, Fedorova A. Adsorption of micelle forming and non-micelle forming surfactants on the adsorbents of different nature. Colloids Surf A. 2007;306:68–74.
  • Erdem A, Ngwabebhoh F, Yildiz U. Synthesis, characterization and swelling investigations of novel polyetheramine-based hydrogels. Polym Bull. 2017;74:873–893.
  • Lu B, Vayssade M, Miao Y, et al. Physico-chemical properties and cytotoxic effects of sugar-based surfactants: impact of structural variations. Colloids Surf B. 2016;145:79–86.
  • Vemula P, John G. Crops: a green approach toward self-assembled soft materials. Acc Chem Res. 2008;41:769–782.
  • Wan Y, Zhao D. On the controllable soft-templating approach to mesoporous silicates. Chem Rev (Washington, DC, US). 2007;107:2821–2860.
  • Wan Y, Shi Y, Zhao D. Designed synthesis of mesoporous solids via nonionic-surfactant-templating approach. Chem Commun (Cambridge, UK). 2007;897–926. DOI:10.1039/B610570J
  • May A, Pasc A, Stébé MJ, et al. Tailored jeffamine molecular tools for ordering mesoporous silica. Langmuir. 2012;28:9816–9824.
  • Stébé M, Emo M, Forny-Le Follotec A, et al. Triblock siloxane copolymer surfactant: template for spherical mesoporous silica with a hexagonal pore ordering. Langmuir. 2013;29:1618–1626.
  • Riachy P, Lopez G, Emo M, et al. Investigation of a novel fluorinated surfactant-based system for the design of spherical wormhole-like mesoporous silica. J Colloid Interface Sci. 2017;487:310–319.
  • Nagarajan R, Ruckenstein E. Theory of surfactant self-assembly. A predictive molecular thermodynamic approach. Langmuir. 1991;7:2934–2969.
  • Camesano T, Nagarajan R. Micelle formation and cmc of gemini surfactants: a thermodynamic model. Colloids Surf. A. 2000;167:165–177.
  • Jusufi A, Hynninen AP, Panagiotopoulos A. Implicit solvent models for micellization of ionic surfactants. J Phys Chem B. 2008;112:13783–13792.
  • Sanders S, Panagiotopoulos A. Micellization behavior of coarse grained surfactant models. J Chem Phys. 2010;132:114902. DOI:10.1063/1.3358354
  • Levine B, Lebard D, Devane R, et al. Micellization studied by gpu-accelerated coarse-grained molecular dynamics. J Chem Theory Comput. 2011;7:4135–4145.
  • De Bruijn V, Van den Broeke L, Leermakers F, et al. Self-consistent-field analysis of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) surfactants: micellar structure, critical micellization concentration, critical micellization temperature, and cloud point. Langmuir. 2002;18:10467–10474.
  • Mackie A, Panagiotopoulos A, Szleifer I. Aggregation behavior of a lattice model for amphiphiles. Langmuir. 1997;13:5022–5028.
  • Gezae Daful A, Baulin VA, Bonet Avalos J, et al. Accurate critical micelle concentrations from a microscopic surfactant model. J Phys Chem B. 2011;115:3434–3443.
  • García Daza FA, Mackie AD. Low critical micelle concentration discrepancy between theory and experiment. J Phys Chem Lett. 2014;5:2027–2032.
  • García Daza FA, Colville AJ, Mackie AD. Mean-field coarse-grained model for poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer systems. Langmuir. 2015;31:3596–3604.
  • FitzGerald PA, Carr MW, Davey TW, et al. Preparation and dilute solution properties of model gemini nonionic surfactants. J Colloid Interface Sci. 2004;275:649–658.
  • Mok M, Thiagarajan R, Flores M, et al. Apparent critical micelle concentrations in block copolymer/ionic liquid solutions: remarkably weak dependence on solvophobic block molecular weight. Macromolecules. 2012;45:4818–4829.
  • Ben-Shaul A, Szleifer I, Gelbart W. Chain organization and thermodynamics in micelles and bilayers. i. theory. J Chem Phys. 1985;83:3597–3611.
  • Al-Anber ZA, Avalos JB, Mackie AD. Prediction of the critical micelle concentration in a lattice model for amphiphiles using a single-chain mean-field theory. J Chem Phys. 2005;122:104910.
  • Rosenbluth MN, Rosenbluth AW. Monte carlo calculation of the average extension of molecular chains. J Chem Phys. 1955;23:356–359.
  • Nyrkova IA, Semenov AN. On the theory of micellization kinetics. Macromol Theory Simul. 2005;14:569–585.
  • Patti A, Mackie A, Siperstein F. Monte carlo simulation of self-assembled ordered hybrid materials. Langmuir. 2007;23:6771–6780.
  • Lopes J, Loh W. Investigation of self-assembly and micelle polarity for a wide range of ethylene oxide-propylene oxide-ethylene oxide block copolymers in water. Langmuir. 1998;14:750–756.
  • Rubinstein M, Colby RH. Polymer physics. 1st ed. Oxford: Oxford University Press; 2003.
  • LeBard DN, Levine BG, DeVane R, et al. Premicelles and monomer exchange in aqueous surfactant solutions above and below the critical micelle concentration. Chem Phys Lett. 2012;522:38–42.
  • Rosen MJ, Kunjappu JT. Micelle formation by surfactants. Hoboken (NJ): Wiley; 2012. Chapter 3; 123--201.
  • Menger FM, Littau CA. Gemini surfactants: a new class of self-assembling molecules. J Am Chem Soc. 1993;115:10083–10090.
  • Kabanov AV, Nazarova IR, Astafieva IV, et al. Micelle formation and solubilization of fluorescent probes in poly(oxyethylene-b-oxypropylene-b-oxyethylene) solutions. Macromolecules. 1995;28:2303–2314.
  • Song LD, Rosen MJ. Surface properties, micellization, and premicellar aggregation of gemini surfactants with rigid and flexible spacers. Langmuir. 1996;12:1149–1153.
  • Rosen MJ, Mathias JH, Davenport L. Aberrant aggregation behavior in cationic gemini surfactants investigated by surface tension, interfacial tension, and fluorescence methods. Langmuir. 1999;15:7340–7346.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.