674
Views
16
CrossRef citations to date
0
Altmetric
Articles

Modelling the self-assembly of silica-based mesoporous materials

ORCID Icon, , , , & ORCID Icon
Pages 435-452 | Received 20 Aug 2017, Accepted 09 Jan 2018, Published online: 24 Jan 2018

References

  • Barton TJ, Bull LM, Klemperer WG, et al. Tailored porous materials. Chem Mater. 1999;11:2633–2656.10.1021/cm9805929
  • Beck JS, Vartuli JC, Roth WJ, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc. 1992;114:10834–10843.10.1021/ja00053a020
  • Kresge CT. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature. 1992;359:710–712.10.1038/359710a0
  • Di Renzo F, Cambon H, Dutartre R. A 28-year-old synthesis of micelle-templated mesoporous silica. Microporous Mater. 1997;10:283–286.10.1016/S0927-6513(97)00028-X
  • Chiola V, Ritsko JE, Vanderpool CD. Process for producing low-bulk density silica. US Patent (1971) 3556725.
  • Zhou H-C, Kitagawa S. Metal-organic frameworks (MOFs). Chem Soc Rev. 2014;43:5415–5418.10.1039/C4CS90059F
  • Huo Q, Margolese DI, Ciesla U, et al. Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays. Chem Mater. 1994;6:1176–1191.10.1021/cm00044a016
  • Zhao D, Feng J, Huo Q, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 Angstrom pores. Science. 1998;279:548–552.10.1126/science.279.5350.548
  • Tanev PT, Pinnavaia TJ. A neutral templating route to mesoporous molecular sieves. Science. 1995;267:865–867.10.1126/science.267.5199.865
  • Tanev PT, Pinnavaia TJ. Biomimetic templating of porous lamellar silicas by vesicular surfactant assemblies. Science. 1996;271:1267–1269.10.1126/science.271.5253.1267
  • Asefa T, MacLachlan MJ, Coombs N, et al. Periodic mesoporous organosilicas with organic groups inside the channel walls. Nature. 1999;402:867–871.
  • Melde BJ, Holland BT, Blanford CF, et al. Mesoporous sieves with unified hybrid inorganic/organic frameworks. Chem Mater. 1999;11:3302–3308.10.1021/cm9903935
  • Inagaki S, Guan S, Fukushima Y, et al. Novel mesoporous materials with a uniform distribution of organic groups and inorganic oxide in their frameworks. J Am Chem Soc. 1999;121:9611–9614.10.1021/ja9916658
  • Ying JY, Mehnert CP, Wong MS. Synthesis and applications of supramolecular-templated mesoporous materials. Angew Chem Int Ed. 1999;38:56–77.10.1002/(ISSN)1521-3773
  • Slowing II, Trewyn BG, Giri S, et al. Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv Func Mater. 2007;17:1225–1236.10.1002/(ISSN)1616-3028
  • Auerbach SM, Fan W, Monson PA. Modelling the assembly of nanoporous silica materials. Int Rev Phys Chem. 2015;34:35–70.10.1080/0144235X.2014.988038
  • Siperstein FR, Gubbins KE. Synthesis and characterization of templated mesoporous materials using molecular simulation. Mol Simul. 2001;27:339–352.10.1080/08927020108031357
  • Blin JL, Impéror-Clerc M. Mechanism of self-assembly in the synthesis of silica mesoporous materials: in situ studies by X-ray and neutron scattering. Chem Soc Rev. 2013;42:4071–4082.10.1039/C2CS35362H
  • Hoffmann F, Cornelius M, Morell J, et al. Silica-based mesoporous organic-inorganic hybrid materials. Angew Chem Int Ed. 2006;45:3216–3251.10.1002/(ISSN)1521-3773
  • Iler RK. Chemistry of silica. New York (NY): Wiley-Interscience; 1979.
  • Chen CY, Burkett SL, Li HX, et al. Studies on mesoporous materials II. Synthesis mechanism of MCM-41. Microporous Mater. 1993;2:27–34.10.1016/0927-6513(93)80059-4
  • Monnier A, Schuth F, Huo Q, et al. Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures. Science. 1993;261:1299–1303.10.1126/science.261.5126.1299
  • Firouzi A, Atef F, Oertli AG, et al. Alkaline lyotropic silicate−surfactant liquid crystals. J Am Chem Soc. 1997;119:3596–3610.10.1021/ja963007i
  • Lee YS, Surjadi D, Rathman JF. Effects of aluminate and silicate on the structure of quaternary ammonium surfactant aggregates. Langmuir. 1996;12:6202–6210.10.1021/la960054f
  • Albuquerque A, Vautier-Giongo C, Pastore HE. Physical chemistry of nanostructured molecular sieves by the study of phase diagrams: the case of the cetyltrimethylammonium bromide-tetramethylammonium silicate-water system. J Colloid Interface Sci. 2005;284:687–693.10.1016/j.jcis.2004.10.065
  • Vautier-Giongo C, Pastore HE. Micellization of CTAB in the presence of silicate anions and the exchange between bromide and silicate at the micelle surface: a step to understand the formation of mesoporous molecular sieves at extremely low surfactant and silicate concentrations. J Colloid Interface Sci. 2006;299:874–882.10.1016/j.jcis.2006.02.040
  • Vartuli JC, Schmitt KD, Kresge CT, et al. Effect of surfactant/silica molar ratios on the formation of mesoporous molecular sieves: inorganic mimicry of surfactant liquid-crystal phases and mechanistic implications. Chem Mater. 1994;6:2317–2326.10.1021/cm00048a018
  • Zana R, Frasch J, Soulard M, et al. Fluorescence probing investigations of the mechanism of formation of organized mesoporous silica. Langmuir. 1999;15:2603–2606.10.1021/la981603f
  • Frasch J, Lebeau B, Soulard M, et al. In situ investigations on cetyltrimethylammonium surfactant/silicate systems, precursors of organized mesoporous MCM-41-type siliceous materials. Langmuir. 2000;16:9049–9057.10.1021/la000295u
  • Galarneau A, Renzo F, Fajula F, et al. Kinetics of formation of micelle-templated silica mesophases monitored by electron paramagnetic resonance. J Colloid Interface Sci. 1998;201:105–117.10.1006/jcis.1998.5413
  • Baute D, Frydman V, Zimmermann H, et al. Properties of the silica layer during the formation of MCM-41 studied by EPR of a silica-bound spin probe. J Phys Chem B. 2005;109:7807–7816.10.1021/jp044538t
  • Regev O. Nucleation events during the synthesis of mesoporous materials using liquid crystalline templating. Langmuir. 1996;12:4940–4944.10.1021/la9602372
  • Sadasivan S, Fowler CE, Khushalani D, et al. Nucleation of MCM-41 nanoparticles by internal reorganization of disordered and nematic-like silica–surfactant clusters. Angew Chem Int Ed. 2002;41:2151–2153.10.1002/1521-3773(20020617)41:12<2151::AID-ANIE2151>3.0.CO;2-U
  • Beurroies I, Ågren P, Büchel G, et al. Detailed in situ XRD and calorimetric study of the formation of silicate/mixed surfactant mesophases under alkaline conditions. Influence of surfactant chain length and synthesis temperature. J Phys Chem B. 2006;110:16254–16260.10.1021/jp053746y
  • Feuston BP, Higgins JB. Model structures for MCM-41 materials: a molecular dynamics simulation. J Phys Chem. 1994;98:4459–4462.10.1021/j100067a037
  • Williams CD, Travis KP, Burton NA, et al. A new method for the generation of realistic atomistic models of siliceous MCM-41. Microporous Mesoporous Mater. 2016;228:215–223.10.1016/j.micromeso.2016.03.034
  • Koh CA, Montanari T, Nooney RI, et al. Experimental and computer simulation studies of the removal of carbon dioxide from mixtures with methane using AlPO 4-5 and MCM-41. Langmuir. 1999;15:6043–6049.10.1021/la9814337
  • Jing Y, Wei L, Wang Y, et al. Molecular simulation of MCM-41: structural properties and adsorption of CO2, N2 and flue gas. Chem Eng J. 2013;220:264–275.10.1016/j.cej.2012.12.078
  • Siperstein FR, Gubbins KE. Phase separation and liquid crystal self-assembly in surfactant-inorganic-solvent systems. Langmuir. 2003;19:2049–2057.10.1021/la026410d
  • Larson RG, Scriven LE, Davis HT. Monte Carlo simulation of model amphiphile–oil–water systems. J Chem Phys. 1985;83:2411–2420.10.1063/1.449286
  • Patti A, Mackie AD, Siperstein FR. Monte Carlo simulation of self-assembled ordered hybrid materials. Langmuir. 2007;23:6771–6780.10.1021/la063296 g
  • Patti A, Siperstein FR, Mackie AD. Phase behavior of model surfactants in the presence of hybrid particles. J Phys Chem C. 2007;111:16035–16044.10.1021/jp074486i
  • Patti A, Mackie AD, Zelenak V, et al. One-pot synthesis of amino functionalized mesoporous silica materials: using simulations to understand transitions between different structures. J Mater Chem. 2009;19:724–732.10.1039/B813016G
  • Patti A, Mackie AD, Siperstein FR. Monte Carlo simulations of self-assembling hexagonal and cage-like bifunctional periodic mesoporous materials. J Mater Chem. 2009;19:7848–7855.10.1039/b914537 k
  • Bhattacharya S, Gubbins KE. Modeling triblock surfactant-templated mesostructured cellular foams. J Chem Phys. 2005;123:134907.10.1063/1.2013250
  • Bhattacharya S, Coasne B, Hung FR, et al. Modeling micelle-templated mesoporous material SBA-15: atomistic model and gas adsorption studies. Langmuir. 2009;25:5802–5813.10.1021/la801560e
  • Jin L, Auerbach SM, Monson PA. Simulating the formation of surfactant-templated mesoporous silica materials: a model with both surfactant self-assembly and silica polymerization. Langmuir. 2013;29:766–780.10.1021/la304475j
  • Jorge M, Gomes JRB, Cordeiro MNDS, et al. Molecular simulation of silica/surfactant self-assembly in the synthesis of periodic mesoporous silicas. J Am Chem Soc. 2007;129:15414–15415.10.1021/ja075070 l
  • Jorgensen WL, Gao J. Monte Carlo simulations of the hydration of ammonium and carboxylate ions. J Phys Chem. 1986;90:2174–2182.10.1021/j100401a037
  • Berendsen HJC, Grigera JR, Straatsma TP. The missing term in effective pair potentials. J Phys Chem. 1987;91:6269–6271.10.1021/j100308a038
  • Pereira JCG, Catlow CRA, Price GD. Molecular dynamics simulation of methanolic and ethanolic silica-based sol-gel solutions at ambient temperature and pressure. J Phys Chem A. 2002;106:130–148.10.1021/jp010078 h
  • Gomes JRB, Cordeiro MNDS, Jorge M. Gas-phase molecular structure and energetics of anionic silicates. Geochim Cosmochim Acta. 2008;72:4421–4439.10.1016/j.gca.2008.06.012
  • Jorge M, Gomes JRB, Cordeiro MNDS, et al. Molecular dynamics simulation of the early stages of the synthesis of periodic mesoporous silica. J Phys Chem B. 2009;113:708–718.10.1021/jp806686w
  • Knight CTG. Are zeolite secondary building units really red herrings? Zeolites. 1990;10:140–144.10.1016/0144-2449(90)90036-Q
  • Pérez-Sánchez G, Gomes JRB, Jorge M. Modeling self-assembly of silica/surfactant mesostructures in the templated synthesis of nanoporous solids. Langmuir. 2013;29:2387–2396.10.1021/la3046274
  • Marrink SJ, Risselada HJ, Yefimov S, et al. The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B. 2007;111:7812–7824.10.1021/jp071097f
  • Wu R, Deng M, Kong B, et al. Coarse-grained molecular dynamics simulation of ammonium surfactant self-assemblies: micelles and vesicles. J Phys Chem B. 2009;113:15010–15016.10.1021/jp906055d
  • Jorge M. Molecular dynamics simulation of self-assembly of n-decyltrimethylammonium bromide micelles. Langmuir. 2008;24:5714–5725.10.1021/la800291p
  • Chien S-C, Pérez-Sánchez G, Gomes JRB, et al. Molecular simulations of the synthesis of periodic mesoporous silica phases at high surfactant concentrations. J Phys Chem C. 2017;121:4564–4575.10.1021/acs.jpcc.6b09429
  • Pérez-Sánchez G, Chien S-C, Gomes JRB, et al. Multiscale model for the templated synthesis of mesoporous silica: the essential role of silica oligomers. Chem Mater. 2016;28:2715–2727.10.1021/acs.chemmater.6b00348
  • Auerbach SM, Ford MH, Monson PA. New insights into zeolite formation from molecular modeling. Curr Opin Colloid Interface Sci. 2005;10:220–225.10.1016/j.cocis.2005.09.012
  • Feuston BP, Garofalini SH. Empirical three-body potential for vitreous silica. J Chem Phys. 1988;89:5818–5824.10.1063/1.455531
  • Rao NZ, Gelb LD. Molecular dynamics simulations of the polymerization of aqueous silicic acid and analysis of the effects of concentration on silica polymorph distributions, growth mechanisms, and reaction kinetics. J Phys Chem B. 2004;108:12418–12428.10.1021/jp049169f
  • Jing Z, Xin L, Sun H. Replica exchange reactive molecular dynamics simulations of initial reactions in zeolite synthesis. Phys Chem Chem Phys. 2015;17:25421–25428.10.1039/C5CP03063C
  • Wu MG, Deem MW. Monte Carlo study of the nucleation process during zeolite synthesis. J Chem Phys. 2002;116:2125–2137.10.1063/1.1430742
  • Zhang XQ, Trinh TT, van Santen RA, et al. Structure-directing role of counterions in the initial stage of zeolite synthesis. J Phys Chem C. 2011;115:9561–9567.10.1021/jp111911h
  • Zhang XQ, van Santen RA, Jansen APJ. Kinetic Monte Carlo modeling of silicate oligomerization and early gelation. Phys Chem Chem Phys. 2012;14:11969–11973.10.1039/c2cp41194f
  • McIntosh GJ. Theoretical investigations into the nucleation of silica growth in basic solution part II – derivation and benchmarking of a first principles kinetic model of solution chemistry. Phys Chem Chem Phys. 2013;15:17496–17509.10.1039/c3cp53223b
  • Tu Y, Tersoff J. Structure and energetics of the Si–SiO2 interface. Phys Rev Lett. 2000;84:4393–4396.10.1103/PhysRevLett.84.4393
  • Burlakov VM, Briggs GAD, Sutton AP, et al. Monte Carlo simulation of growth of porous SiOx by vapor deposition. Phys Rev Lett. 2001;86:3052–3055.10.1103/PhysRevLett.86.3052
  • Malani A, Auerbach SM, Monson PA. Probing the mechanism of silica polymerization at ambient temperatures using Monte Carlo simulations. J Phys Chem Lett. 2010;1:3219–3224.10.1021/jz101046y
  • Malani A, Auerbach SM, Monson PA. Monte Carlo simulations of silica polymerization and network formation. J Phys Chem C. 2011;115:15988–16000.10.1021/jp202209 g
  • Schumacher C, Gonzalez J, Wright PA, et al. Generation of atomistic models of periodic mesoporous silica by kinetic Monte Carlo simulation of the synthesis of the material. J Phys Chem B. 2006;110:319–333.10.1021/jp0551871
  • Ferreiro-Rangel CA, Lozinska MM, Wright PA, et al. Kinetic Monte Carlo simulation of the synthesis of periodic mesoporous silicas SBA-2 and STAC-1: generation of realistic atomistic models. J Phys Chem C. 2012;116:20966–20974.10.1021/jp307610a
  • Huo QS, Leon R, Petroff PM, et al. Mesostructure design with gemini surfactants: supercage formation in a three-dimensional hexagonal array. Science. 1995;268:1324–1327.10.1126/science.268.5215.1324
  • Zhou WZ, Hunter HMA, Wright PA, et al. Imaging the pore structure and polytypic intergrowths in mesoporous silica. J Phys Chem B. 1998;102:6933–6936.10.1021/jp982579 h
  • Bagshaw SA, Prouzet E, Pinnavaia TJ. Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants. Science. 1995;269:1242–1244.10.1126/science.269.5228.1242
  • Ryoo R, Kim JM, Ko CH, et al. Disordered molecular sieve with branched mesoporous channel network. J Phys Chem. 1996;100:17718–17721.10.1021/jp9620835
  • Yu C, Yu Y, Zhao D. Highly ordered large caged cubic mesoporous silica structures templated by triblock PEO–PBO–PEO copolymer. Chem Commun. 2000;575–576.10.1039/b000603n
  • Che S, Garcia-Bennett AE, Yokoi T, et al. A novel anionic surfactant templating route for synthesizing mesoporous silica with unique structure. Nat Mater. 2003;2:801–805.10.1038/nmat1022
  • Alexandridis P, Alan Hatton TA. Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics, and modeling. Colloids Surf, A. 1995;96:1–46.10.1016/0927-7757(94)03028-X
  • Impéror-Clerc M, Davidson P, Davidson A. Existence of a microporous corona around the mesopores of silica-based SBA-15 materials templated by triblock copolymers. J Am Chem Soc. 2000;122:11925–11933.10.1021/ja002245 h
  • Zholobenko VL, Khodakov AY, Impéror-Clerc M, et al. Initial stages of SBA-15 synthesis: an overview. Adv Coll Interface Sci. 2008;142:67–74.10.1016/j.cis.2008.05.003
  • Hezaveh S, Samanta S, Milano G, et al. Molecular dynamics simulation study of solvent effects on conformation and dynamics of polyethylene oxide and polypropylene oxide chains in water and in common organic solvents. J Chem Phys. 2012;136:124901.10.1063/1.3694736
  • Chen H, Wu Y, Tan Y, et al. MesoDyn and experimental approach to the structural fabrication and pore-size adjustment of SBA-15 molecular sieves. Adsorpt Sci Technol. 2009;27:579–592.
  • Yuan S, Zhang X, Chan K. Effects of shear and charge on the microphase formation of P123 polymer in the SBA-15 synthesis investigated by mesoscale simulations. Langmuir. 2009;25:2034–2045.10.1021/la8035133
  • Chen H, Wu Y, Tan Y, et al. Mesoscopic simulation of surfactant/silicate self-assembly in the mesophase formation of SBA-15 under charge matching interactions. Eur Polymer J. 2012;48:1892–1900.10.1016/j.eurpolymj.2012.08.005
  • Magee JE, Siperstein FR. Formation of ordered mesoporous materials under slow aggregation conditions. J Phys Chem C. 2009;113:1680–1685.10.1021/jp8071553
  • Lettow JS, Han YJ, Schmidt-Winkel P, et al. Hexagonal to mesocellular foam phase transition in polymer-templated mesoporous silicas. Langmuir. 2000;16:8291–8295.10.1021/la000660 h
  • Altevogt P, Evers OA, Fraaije JG, et al. The MesoDyn project: software for mesoscale chemical engineering. J Mol Struct (Thoechem). 1999;463:139–143.10.1016/S0166-1280(98)00403-5
  • Sumper M. A phase separation model for the nanopatterning of diatom biosilica. Science. 2002;295:2430–2433.10.1126/science.1070026
  • Gröger C, Lutz K, Brunner E. Biomolecular self-assembly and its relevance in silica biomineralization. Cell Biochem Biophys. 2008;50:23–39.10.1007/s12013-007-9003-2
  • Tanev PT, Pinnavaia TJ. Mesoporous silica molecular sieves prepared by ionic and neutral surfactant templating: a comparison of physical properties. Chem Mater. 1996;8:2068–2079.10.1021/cm950549a
  • Centi A, Jorge M. Molecular simulation study of the early stages of formation of bioinspired mesoporous silica materials. Langmuir. 2016;32:7228–7240.10.1021/acs.langmuir.6b01731
  • Centi A. Computational modelling and design of bioinspired silica materials [ PhD thesis]. University of Strathclyde; 2017.
  • Malliaris A, Le Moigne J, Sturm J, et al. Temperature dependence of the micelle aggregation number and rate of intramicellar excimer formation in aqueous surfactant solutions. J Phys Chem. 1985;89:2709–2713.10.1021/j100258a054
  • Jorgensen WL, Maxwell DS, Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc. 1996;118:11225–11236.10.1021/ja9621760
  • Zhang W, Pauly TR, Pinnavaia TJ. Tailoring the framework and textural mesopores of HMS molecular sieves through an electrically neutral (SI) assembly pathway. Chem Mater. 1997;9:2491–2498.10.1021/cm970354y
  • Hoffmann F, Cornelius M, Morell J, et al. Silica-based mesoporous organic–inorganic hybrid materials. Angew Chem Int Ed. 2006;45:3216–3251.10.1002/(ISSN)1521-3773
  • Pal N, Bhaumik A. Soft templating strategies for the synthesis of mesoporous materials: Inorganic, organic–inorganic hybrid and purely organic solids. Adv Coll Interface Sci. 2013;189–190:21–41.10.1016/j.cis.2012.12.002
  • Croissant JG, Cattoën X, Man MWC, et al. Syntheses and applications of periodic mesoporous organosilica nanoparticles. Nanoscale. 2015;7:20318–20334.10.1039/C5NR05649G
  • Hatton B, Landskron K, Whitnall W, et al. Past, present, and future of periodic mesoporous organosilicas – the PMOs. Acc Chem Res. 2005;38:305–312.10.1021/ar040164a
  • Mizoshita N, Tani T, Inagaki S. Syntheses, properties and applications of periodic mesoporous organosilicas prepared from bridged organosilane precursors. Chem Soc Rev. 2011;40:789–800.10.1039/C0CS00010H
  • Van Der Voort P, Esquivel D, De Canck E, et al. Periodic mesoporous organosilicas: from simple to complex bridges; a comprehensive overview of functions, morphologies and applications. Chem Soc Rev. 2013;42:3913–3955.10.1039/C2CS35222B
  • Inagaki S, Guan S, Ohsuna T, et al. An ordered mesoporous organosilica hybrid material with a crystal-like wall structure. Nature. 2002;416:304–307.10.1038/416304a
  • Futamura R, Jorge M, Gomes JRB. Structures and energetics of organosilanes in the gaseous phase: a computational study. Theoret Chem Acc. 2013;132:1323–1327.10.1007/s00214-012-1323-7
  • Futamura R, Jorge M, Gomes JRB. Role of the organic linker in the early stages of the templated synthesis of PMOs. Phys Chem Chem Phys. 2013;15:6166–6169.10.1039/c3cp50193 k
  • Attard GS, Glyde JC, Göltner CG. Liquid-crystalline phases as templates for the synthesis of mesoporous silica. Nature. 1995;378:366–368.10.1038/378366a0
  • Taddese T, Carbone P. Effect of Chain Length on the Partition Properties of Poly(ethylene oxide): Comparison between MARTINI Coarse-Grained and Atomistic Models. J Phys Chem B. 2017;121:1601–1609.10.1021/acs.jpcb.6b10858
  • Manning JRH, Yip TWS, Centi A, et al. An eco-friendly, tunable and scalable method for producing porous functional nanomaterials designed using molecular interactions. ChemSuschem. 2017;10:1683–1691.10.1002/cssc.201700027
  • Pérez-Sánchez G, Jorge M, Gomes JRB. Manuscript in preparation.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.