1,714
Views
20
CrossRef citations to date
0
Altmetric
Articles

Recruiting machine learning methods for molecular simulations of proteins

ORCID Icon & ORCID Icon
Pages 891-904 | Received 12 Oct 2017, Accepted 27 Feb 2018, Published online: 13 Mar 2018

References

  • Carlsson J , Coleman RG , Setola V , et al . Ligand discovery from a dopamine D3 receptor homology model and crystal structure. Nat Chem Biol. 2011;7:769–778.
  • Colas C , Grewer C , Otte NJ , et al . Ligand discovery for the alanine-serine-cysteine transporter (ASCT2, SLC1A5) from homology modeling and virtual screening. PLoS Comput Biol. 2015;11:e1004477.
  • Ung PMU , Song W , Cheng L , et al . Inhibitor discovery for the human GLUT1 from homology modeling and virtual screening. ACS Chem Biol. 2016;11:1908–1916.
  • Kim SK , Chen Y , Abrol R , et al . Activation mechanism of the G protein-coupled sweet receptor heterodimer with sweeteners and allosteric agonists. Proc Natl Acad Sci USA. 2017;114:2568–2573.
  • Phillips JC , Braun R , Wang W , et al . Scalable molecular dynamics with NAMD. J Comput Chem. 2005;26:1781–1802.
  • Case D , Babin V , Berryman J , et al . Amber 14; 2014.
  • Eastman P , Swails J , Chodera JD , et al . OpenMM 7: rapid development of high performance algorithms for molecular dynamics. PLoS Comput Biol. 2017;13:e1005659.
  • Hess B , Kutzner C , Van Der Spoel D , et al . GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput. 2008;4:435–447.
  • Kumar S , Rosenberg JM , Bouzida D , et al . The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J Comput Chem. 1992;13:1011–1021.
  • Schlitter J , Engels M , Krüger P . Targeted molecular dynamics: a new approach for searching pathways of conformational transitions. J Mol Graphics. 1994;12:84–89.
  • Izrailev S , Stepaniants S , Balsera M , et al . Molecular dynamics study of unbinding of the avidin-biotin complex. Biophys J. 1997;72:1568–1581.
  • Wu X , Wang S . Self-guided molecular dynamics simulation for efficient conformational search. J Phys Chem B. 1998;102:7238–7250.
  • Sugita Y , Okamoto Y . Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett. 1999;314:141–151.
  • Laio A , Parrinello M . Escaping free-energy minima. Proc Natl Acad Sci USA. 2002;99:12562–12566.
  • Bolhuis PG , Chandler D , Dellago C , et al . Transition path sampling: throwing ropes over rough mountain passes, in the dark. Annu Rev Phys Chem. 2002;53:291–318.
  • Maragliano L , Vanden-Eijnden E . A temperature accelerated method for sampling free energy and determining reaction pathways in rare events simulations. Chem Phys Lett. 2006;426:168–175.
  • Hamelberg D , de Oliveira CAF , McCammon JA . Sampling of slow diffusive conformational transitions with accelerated molecular dynamics. J Chem Phys. 2007;127:155102.
  • Darve E , Rodríguez-Gómez D , Pohorille A . Adaptive biasing force method for scalar and vector free energy calculations. J Chem Phys. 2008;128:144120.
  • Vanden-Eijnden E , Venturoli M . Revisiting the finite temperature string method for the calculation of reaction tubes and free energies. J Chem Phys. 2009;130:194103.
  • Miao Y , McCammon JA . Unconstrained enhanced sampling for free energy calculations of biomolecules: a review. Mol Simul. 2016;42:1046–1055.
  • Marks DS , Colwell LJ , Sheridan R , et al . Protein 3D structure computed from evolutionary sequence variation. PLoS ONE. 2011;6:e28766.
  • Hopf TA , Colwell LJ , Sheridan R , et al . Three-dimensional structures of membrane proteins from genomic sequencing. Cell. 2012;149:1607–1621.
  • Marks DS , Hopf TA , Sander C . Protein structure prediction from sequence variation. Nat Biotechnol. 2012;30:1072–1080.
  • Ovchinnikov S , Kamisetty H , Baker D . Robust and accurate prediction of residue-residue interactions across protein interfaces using evolutionary information. Elife. 2014;3:e02030.
  • Hopf TA , Schärfe CP , Rodrigues JP , et al . Sequence co-evolution gives 3D contacts and structures of protein complexes. Elife. 2014;3:e03430.
  • Liu Y , Palmedo P , Ye Q , et al . Enhancing evolutionary couplings with deep convolutional neural networks. Cell Syst. 2017;6:65–74.
  • Tang Y , Huang YJ , Hopf TA , et al . Protein structure determination by combining sparse NMR data with evolutionary couplings. Nat Methods. 2015;12:751–754.
  • Mittal J , Best RB . Tackling force-field bias in protein folding simulations: folding of villin HP35 and pin WW domains in explicit water. Biophys J. 2010;99:L26–L28.
  • Piana S , Lindorff-Larsen K , Shaw DE . How robust are protein folding simulations with respect to force field parameterization? Biophys J. 2011;100:L47–L49.
  • Kulik HJ , Luehr N , Ufimtsev IS , et al . Ab initio quantum chemistry for protein structures. J Phys Chem B. 2012;116:12501–12509.
  • Piana S , Klepeis JL , Shaw DE . Assessing the accuracy of physical models used in protein-folding simulations: quantitative evidence from long molecular dynamics simulations. Curr Opin Struc Biol. 2014;24:98–105.
  • Shaw DE , Deneroff MM , Dror RO , et al . Anton, a special-purpose machine for molecular dynamics simulation. Commun ACM. 2008;51:91–97.
  • Shaw DE , Grossman J , Bank JA , et al . Anton 2: Raising the bar for performance and programmability in a special-purpose molecular dynamics supercomputer. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE Press; 2014. p. 41–53.
  • Shirts M , Pande VS . Screen savers of the world unite!. Science. 2000;290:1903–1904.
  • Bode B , Butler M , Dunning T , et al . The Blue Waters super-system for super-science -- contemporary HPC architectures. In: Contemporary HPC architectures. Sitka Publications; 2012. ISBN: 978-1-4665-6835-8.
  • Allison JR . Using simulation to interpret experimental data in terms of protein conformational ensembles. Curr Opin Struc Biol. 2017;43:79–87.
  • Shukla D , Meng Y , Roux B , et al . Activation pathway of Src kinase reveals intermediate states as targets for drug design. Nat Commun. 2014;5:3397.
  • Lapidus LJ , Acharya S , Schwantes CR , et al . Complex pathways in folding of protein g explored by simulation and experiment. Biophys J. 2014;107:947–955.
  • Kohlhoff KJ , Shukla D , Lawrenz M , et al . Cloud-based simulations on Google Exacycle reveal ligand modulation of GPCR activation pathways. Nat Chem. 2014;6:15–21.
  • Lawrenz M , Shukla D , Pande VS . Cloud computing approaches for prediction of ligand binding poses and pathways. Sci Rep. 2015;5:7918.
  • Feinberg EN , Farimani AB , Hernandez CX , et al . Kinetic machine learning unravels ligand-directed conformational change of μ opioid receptor. bioRxiv; 2017:170886.
  • Sultan MM , Denny RA , Unwalla R , et al . Millisecond dynamics of BTK reveal kinome-wide conformational plasticity within the apo kinase domain. Sci Rep. 2017;7:15604.
  • Pande VS , Beauchamp K , Bowman GR . Everything you wanted to know about markov state models but were afraid to ask. Methods. 2010;52:99–105.
  • Beauchamp KA , Ensign DL , Das R , et al . Quantitative comparison of villin headpiece subdomain simulations and triplet-triplet energy transfer experiments. Proc Natl Acad Sci USA. 2011;108:12734–12739.
  • Lane TJ , Bowman GR , Beauchamp K , et al . Markov state model reveals folding and functional dynamics in ultra-long MD trajectories. J Am Chem Soc. 2011;133:18413–18419.
  • Shukla D , Hernández CX , Weber JK , et al . Markov state models provide insights into dynamic modulation of protein function. Acc Chem Res. 2015;48:414–422.
  • Jolliffe IT . Principal component analysis and factor analysis. In: Principal component analysis. New York (NY): Springer; 1986. p. 115–128.
  • Abdi H , Williams LJ . Principal component analysis. Wires Comput Stat. 2010;2:433–459.
  • Sharpee T , Rust NC , Bialek W . Maximally informative dimensions: analyzing neural responses to natural signals. In: Advances in neural information processing systems; 2003. p. 277–284.
  • Ichiye T , Karplus M . Collective motions in proteins: a covariance analysis of atomic fluctuations in molecular dynamics and normal mode simulations. Proteins Struct Funct Bioinf. 1991;11:205–217.
  • Amadei A , Linssen ABM , Berendsen HJC . Essential dynamics of proteins. Proteins Struct Funct Bioinf. 1993;17:412–425.
  • Hayward S , Go N . Collective variable description of native protein dynamics. Annu Rev Phys Chem. 1995;46:223–250.
  • Kitao A , Go N . Investigating protein dynamics in collective coordinate space. Curr Opin Struct Biol. 1999;9:164–169.
  • Schwantes CR , Pande VS . Improvements in Markov state model construction reveal many non-native interactions in the folding of NTL9. J Chem Theory Comput. 2013;9:2000–2009.
  • Pérez-Hernández G , Paul F , Giorgino T , et al . Identification of slow molecular order parameters for Markov model construction. J Chem Phys. 2013;139:015102.
  • Molgedey L , Schuster HG . Separation of a mixture of independent signals using time delayed correlations. Phys Rev Lett. 1994;72:3634–3637.
  • Naritomi Y , Fuchigami S . Slow dynamics in protein fluctuations revealed by time-structure based independent component analysis: the case of domain motions. J Chem Phys. 2011;134:065101.
  • Shukla D , Peck A , Pande VS . Conformational heterogeneity of the calmodulin binding interface. Nat Commun. 2016;7:10910.
  • Schwantes CR , Shukla D , Pande VS . Markov state models and tICA reveal a nonnative folding nucleus in simulations of NuG2. Biophys J. 2016;110:1716–1719.
  • Mukherjee S , Pantelopulos GA , Voelz VA . Markov models of the apo-MDM2 lid region reveal diffuse yet two-state binding dynamics and receptor poses for computational docking. Sci Rep. 2016;6:31631.
  • Razavi AM , Khelashvili G , Weinstein H . A Markov state-based quantitative kinetic model of sodium release from the dopamine transporter. Sci Rep. 2017;7:40076.
  • Ryckbosch SM , Wender PA , Pande VS . Molecular dynamics simulations reveal ligand-controlled positioning of a peripheral protein complex in membranes. Nat Commun. 2017;8.
  • Abramyan AM , Stolzenberg S , Li Z , et al . The isomeric preference of an atypical dopamine transporter inhibitor contributes to its selection of the transporter conformation. ACS Chem Neurosci. 2017;8:1735–1746.
  • Beauchamp KA , Bowman GR , Lane TJ , et al . MSMBuilder2: modeling conformational dynamics on the picosecond to millisecond scale. J Chem Theory Comput. 2011;7:3412–3419.
  • Scherer MK , Trendelkamp-Schroer B , Paul F , et al . PyEMMA 2: a software package for estimation, validation, and analysis of Markov models. J Chem Theory Comput. 2015;11:5525–5542.
  • Hinton GE . Reducing the dimensionality of data with neural networks. Science. 2006;313:504–507.
  • Wang Y , Yao H , Zhao S . Auto-encoder based dimensionality reduction. Neurocomputing. 2016;184:232–242.
  • Doerr S , Ariz I , Harvey MJ , et al . Dimensionality reduction methods for molecular simulations. arXiv preprint arXiv:171010629; 2017.
  • Wehmeyer C , Noé F . Time-lagged autoencoders: deep learning of slow collective variables for molecular kinetics. arXiv preprint arXiv:171011239; 2017.
  • Hernández CX , Wayment-Steele HK , Sultan MM , et al . Variational encoding of complex dynamics. arXiv preprint arXiv:171108576; 2017.
  • Johnston C . Netflix never used its \$1 million algorithm due to engineering costs; 2012. Available from: https://arstechnica.com/gadgets/2012/04/netix-never-used-its-1-million-algorithm-dueto-engineering-costs/.
  • Sultan MM , Pande VS . tICA-metadynamics: accelerating metadynamics by using kinetically selected collective variables. J Chem Theory Comput. 2017;13:2440–2447.
  • Hofmann T , Schölkopf B , Smola AJ . Kernel methods in machine learning. Ann Stat. 2008:1171–1220.
  • Schwantes CR , Pande VS . Modeling molecular kinetics with tICA and the kernel trick. J Chem Theory Comput. 2015;11:600–608.
  • Harrigan MP , Pande VS . Landmark kernel tICA for conformational dynamics. bioRxiv; 2017.
  • Wu H , Paul F , Wehmeyer C , et al . Multiensemble Markov models of molecular thermodynamics and kinetics. Proc Natl Acad Sci USA. 2016;113:E3221–E3230.
  • Chen W , Ferguson AL . Molecular enhanced sampling with autoencoders: on-the-fly collective variable discovery and accelerated free energy landscape exploration. arXiv preprint arXiv:180100203; 2017.
  • Fowler DM , Fields S . Deep mutational scanning: a new style of protein science. Nat Methods. 2014;11:801–807.
  • Kitzman JO , Starita LM , Lo RS , et al . Massively parallel single-amino-acid mutagenesis. Nat Methods. 2015;12:203–206.
  • Romero PA , Tran TM , Abate AR . Dissecting enzyme function with microfluidic-based deep mutational scanning. Proc Natl Acad Sci USA. 2015;112:7159–7164.
  • Harris DT , Wang N , Riley TP , et al . Deep mutational scans as a guide to engineering high affinity T cell receptor interactions with peptide-bound major histocompatibility complex. J Biol Chem. 2016;291:24566–24578.
  • Wrenbeck EE , Faber MS , Whitehead TA . Deep sequencing methods for protein engineering and design. Curr Opin Struct Biol. 2017;45:36–44.
  • Mann M , Jensen ON . Proteomic analysis of post-translational modifications. Nat Biotechnol. 2003;21:255–261.
  • Witze ES , Old WM , Resing KA , et al . Mapping protein post-translational modifications with mass spectrometry. Nat Methods. 2007;4:798–806.
  • Grimsrud PA , Swaney DL , Wenger CD , et al . Phosphoproteomics for the masses. ACS Chem Biol. 2010;5:105–119.
  • Choudhary C , Mann M . Decoding signalling networks by mass spectrometry-based proteomics. Nat Rev Mol Cell Bio. 2010;11:427–439.
  • Olivas ES , Guerrero JDM , Sober MM , et al . Handbook of research on machine learning applications and trends: Algorithms, methods, and techniques. IGI Global; 2009.
  • Sultan MM , Pande VS . Transfer learning from Markov models leads to efficient sampling of related systems. J Phys Chem B. 2017. DOI:10.1021/acs.jpcb.7b06896
  • Sultan MM , Wayment-Steele HK , Pande VS . Transferable neural networks for enhanced sampling of protein dynamics. arXiv preprint arXiv:180100636; 2018.
  • Tenenbaum JB , De Silva V , Langford JC . A global geometric framework for nonlinear dimensionality reduction. Science. 2000;290:2319–2323.
  • Das P , Moll M , Stamati H , et al . Low-dimensional, free-energy landscapes of protein-folding reactions by nonlinear dimensionality reduction. Proc Natl Acad Sci USA. 2006;103:9885–9890.
  • Stamati H , Clementi C , Kavraki LE . Application of nonlinear dimensionality reduction to characterize the conformational landscape of small peptides. Proteins Struct Funct Bioinf. 2010;78:223–235.
  • Coifman RR , Lafon S , Lee AB , et al . Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. Proc Natl Acad Sci USA. 2005;102:7426–7431.
  • Ferguson AL , Panagiotopoulos AZ , Debenedetti PG , et al . Systematic determination of order parameters for chain dynamics using diffusion maps. Proc Natl Acad Sci USA. 2010;107:13597–13602.
  • Moffett A , Shukla D . On the transferability of time-lagged independent components between similar molecular dynamics systems. arXiv preprint arXiv:1710.00443; 2017.
  • Segaran T . Programming collective intelligence: building smart web 2.0 applications. O’Reilly Media, Inc.; 2007.
  • Vanatta DK , Shukla D , Lawrenz M , et al . A network of molecular switches controls the activation of the two-component response regulator NtrC. Nat Commun. 2015;6:7283.
  • Moffett AS , Bender KW , Huber SC , et al . Molecular dynamics simulations reveal the conformational dynamics of Arabidopsis thaliana BRI1 and BAK1 receptor-like kinases. J Biol Chem. 2017;292:12643–12652.
  • Selvam B , Shukla D . Understanding the conformational diversity of proton-coupled oligopeptide transporter (POT) family. Biophys J. 2017;112:16a–17a.
  • Pontiggia F , Pachov D , Clarkson M , et al . Free energy landscape of activation in a signalling protein at atomic resolution. Nat Commun. 2015;6:7284.
  • Bowman GR , Ensign DL , Pande VS . Enhanced modeling via network theory: adaptive sampling of markov state models. J Chem Theory Comput. 2010;6:787–794.
  • Chiavazzo E , Covino R , Coifman RR , et al . Intrinsic map dynamics exploration for uncharted effective free-energy landscapes. Proc Natl Acad Sci USA. 2017;114:E5494–E5503.
  • Tiwary P , Berne BJ . Spectral gap optimization of order parameters for sampling complex molecular systems. Proc Natl Acad Sci USA. 2016;113:2839–2844.
  • Preto J , Clementi C . Fast recovery of free energy landscapes via diffusion-map-directed molecular dynamics. Phys Chem Chem Phys. 2014;16:19181–19191.
  • Zhang J , Chen M . Unfolding hidden barriers by active enhanced sampling. arXiv preprint arXiv:170507414; 2017.
  • Zimmerman MI , Bowman GR . FAST conformational searches by balancing exploration/exploitation trade-offs. J Chem Theory Comput. 2015;11:5747–5757.
  • Perez A , MacCallum JL , Dill KA . Accelerating molecular simulations of proteins using bayesian inference on weak information. Proc Natl Acad Sci USA. 2015;112:11846–11851.
  • Perez A , Morrone JA , Dill KA . Accelerating physical simulations of proteins by leveraging external knowledge. Wires Comput Mol Sci. 2017;7:e1309.
  • Meng Y , Roux B . Locking the active conformation of c-src kinase through the phosphorylation of the activation loop. J Mol Biol. 2014;426:423–435.
  • Meng Y , Shukla D , Pande VS , et al . Transition path theory analysis of c-src kinase activation. Proc Natl Acad Sci USA. 2016;113:9193–9198.
  • Fajer M , Meng Y , Roux B . The activation of c-Src tyrosine kinase: conformational transition pathway and free energy landscape. J Phys Chem B. 2016;121:3352–3363.
  • Shamsi Z , Cheng K , Shukla D . REinforcement learning based Adaptive samPling: REAPing rewards by exploring protein conformational landscapes. arXiv; 2017.
  • Sutton RS , Barto AG . Reinforcement learning: an introduction. Vol. 1. Cambridge: MIT Press; 1998.
  • Silver D , Huang A , Maddison CJ , et al . Mastering the game of Go with deep neural networks and tree search. Nature. 2016;529:484–489.
  • Shamsi Z , Moffett AS , Shukla D . Enhanced unbiased sampling of protein dynamics using evolutionary coupling information. Sci Rep. 2017;7:12700.
  • Feng J , Shukla D . Characterizing conformational dynamics of proteins using evolutionary couplings. J Phys Chem B. 2018;122:1017–1025.
  • Asamitsu K , Hirokawa T , Hibi Y , et al . Molecular dynamics simulation and experimental verification of the interaction between cyclin T1 and HIV-1 Tat proteins. PLoS ONE. 2015;10:e0119451.
  • Dror RO , Mildorf TJ , Hilger D , et al . Structural basis for nucleotide exchange in heterotrimeric G proteins. Science. 2015;348:1361–1365.
  • Latorraca NR , Fastman NM , Venkatakrishnan A , et al . Mechanism of substrate translocation in an alternating access transporter. Cell. 2017;169:96–107.
  • Pan AC , Xu H , Palpant T , et al . Quantitative characterization of the binding and unbinding of millimolar drug fragments with molecular dynamics simulations. J Chem Theory Comput. 2017;13:3372–3377.
  • Gregorio GG , Masureel M , Hilger D , et al . Single-molecule analysis of ligand efficacy in β2AR--G-protein activation. Nature. 2017;547:68–73.
  • Lindorff-Larsen K , Maragakis P , Piana S , et al . Systematic validation of protein force fields against experimental data. PLoS ONE. 2012;7:e32131.
  • Huang J , MacKerell AD . CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J Comput Chem. 2013;34:2135–2145.
  • Islam SM , Stein RA , Mchaourab HS , et al . Structural refinement from restrained-ensemble simulations based on EPR/DEER data: application to T4 lysozyme. J Phys Chem B. 2013;117:4740–4754.
  • Roux B , Islam SM . Restrained-ensemble molecular dynamics simulations based on distance histograms from double electron-electron resonance spectroscopy. J Phys Chem B. 2013;117:4733–4739.
  • Mittal S , Shukla D . Predicting optimal DEER label positions to study protein conformational heterogeneity. J Phys Chem B. 2017;121:9761–9770.
  • Islam SM , Roux B . Simulating the distance distribution between spin-labels attached to proteins. J Phys Chem B. 2015;119:3901–3911.
  • Noé F , Nüske F . A variational approach to modeling slow processes in stochastic dynamical systems. Multiscale Model Sim. 2013;11:635–655.
  • Nüske F , Keller BG , Pérez-Hernández G , et al . Variational approach to molecular kinetics. J Chem Theory Comput. 2014;10:1739–1752.
  • McGibbon RT , Hernández CX , Harrigan MP , et al . Osprey: hyperparameter optimization for machine learning. J Open Source Software. 2016;1.
  • Dror RO , Arlow DH , Maragakis P , et al . Activation mechanism of the β2-adrenergic receptor. Proc Natl Acad Sci USA. 2011;108:18684–18689.
  • Manglik A , Kim TH , Masureel M , et al . Structural insights into the dynamic process of β2-adrenergic receptor signaling. Cell. 2015;161:1101–1111.
  • Fowler PW , Orwick-Rydmark M , Radestock S , et al . Gating topology of the proton-coupled oligopeptide symporters. Structure. 2015;23:290–301.
  • Liu Y , Racah E , Correa J , et al . Application of deep convolutional neural networks for detecting extreme weather in climate datasets. arXiv preprint arXiv:160501156; 2016.
  • Jones N . How machine learning could help to improve climate forecasts. Nature. 2017;548:379–380.
  • Nosengo N . Can artificial intelligence create the next wonder material? Nature. 2016;533:22–25.
  • Zhang L , Tan J , Han D , et al . From machine learning to deep learning: progress in machine intelligence for rational drug discovery. Drug Discov Today. 2017;22:1680–1685.
  • Schneider G . Automating drug discovery. Nat Rev Drug Discov. 2017;17:97–113.
  • Stephens ZD , Lee SY , Faghri F , et al . Big data: astronomical or genomical? PLoS Biol. 2015;13:e1002195.
  • Vinyals O , Blundell C , Lillicrap T , et al . Matching networks for one shot learning. In: Advances in neural information processing systems; 2016. p. 3630–3638.
  • Ravi S , Larochelle H . Optimization as a model for few-shot learning. ICLR; 2016.
  • Xian Y , Schiele B , Akata Z . Zero-shot learning-the good, the bad and the ugly. arXiv; 2017.
  • McGibbon RT , Taube AG , Donchev AG , et al . Improving the accuracy of Møller-plesset perturbation theory with neural networks. J Chem Phys. 2017;147:161725.
  • McSkimming DI , Rasheed K , Kannan N . Classifying kinase conformations using a machine learning approach. BMC Bioinform. 2017;18:86.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.