926
Views
17
CrossRef citations to date
0
Altmetric
Articles

Contact angle and surface tension of water on a hexagonal boron nitride monolayer: a methodological investigation

, , , , , & show all
Pages 454-461 | Received 15 May 2018, Accepted 15 Jul 2018, Published online: 30 Jul 2018

References

  • Ruijterde M, Blake T, Coninck JD. Dynamic wetting studied by molecular modeling simulations of droplet spreading. Langmuir. 1999;15:7836–7847. doi: 10.1021/la990171l
  • Werder T, Walther J, jaffe R, et al. Molecular dynamics simulation of contact angles of water droplets in carbon nanotubes. Nano Lett. 2001;1:697–702. doi: 10.1021/nl015640u
  • Shi B, Dhir VK. Molecular dynamics simulation of the contact angle of liquids on solid surfaces. J Chem Phys. 2009;130:034705–034710.
  • Weijs J, Marchand A, Andreotti B, et al. Origin of line tension of a Lennard-Jones nanodroplet. J Chem Phys. 2011;23:022001–022011.
  • Dutta R, Khan S, Singh J. Wetting transition of water on graphite and boron-nitride surfaces: a molecular dynamics study. Fluid Phase Equilib. 2011;302:310–315. doi: 10.1016/j.fluid.2010.07.006
  • Li H, Zeng C. Wetting and interfacial properties of water nanodroplets in contact with graphene and monolayer boron–nitride sheets. ACS Nano. 2012;6:2401–2409. doi: 10.1021/nn204661d
  • Ritos K, Dongari N, Zhang Y, et al. The dynamics of nanoscale droplets on moving surfaces. Langmuir. 2013;29:6936–6943. doi: 10.1021/la401131x
  • Santiso E, Herdes C, Muller E. On the calculation of solid–fluid contact angles from molecular dynamics. Entropy. 2013;15:3734–3745. doi: 10.3390/e15093734
  • Wu Y, Wagner L, Aluru N. Hexagonal boron nitride and water interaction parameters. J Chem Phys. 2016;144:164118–164122.
  • Li X, Qiu H, Liu X, et al. Wettability of supported monolayer hexagonal boron nitride in air. Adv Funct Mater. 2017;27:1603181–1603188.
  • Ravipati S, Aymard B, Kalliadasis S, et al. On the equilibrium contact angle of sessile liquid drops from molecular dynamics simulations. J Chem Phys. 2018;148:164704–164715. doi: 10.1063/1.5021088
  • Ghoufi A, Morineau D, Lefort R, et al. Molecular simulations of confined liquids: an alternative to the grand canonical Monte Carlo simulations. J Chem Phys. 2011;134:074104–074113.
  • Zhu H, Ghoufi A, Szymczyk A, et al. Anomalous dielectric behavior of nanoconfined electrolytic solutions. Phys Rev Lett. 2012;109:107801–107806.
  • Garnier L, Szymczyk A, Malfreyt P, et al. Physics behind water transport through nanoporous boron nitride and graphene. J Phys Chem Lett. 2016;7:3371–3376. doi: 10.1021/acs.jpclett.6b01365
  • Ghoufi A, Malfreyt P, TIldesley D. Computer modelling of the surface tension of the gas–liquid and liquid–liquid interface. Chem Soc Rev. 2016;45:1387–1409. doi: 10.1039/C5CS00736D
  • d'Oliveira H, Davoy X, Arche E, et al. Test-area surface tension calculation of the graphene-methane interface: fluctuations and commensurability. J Chem Phys. 2017;146:214112–214117. doi: 10.1063/1.4974165
  • Werder T, Walther JH, Jaffe RL, et al. On the water–carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes. J Phys Chem B. 2003;107:1345–1352. doi: 10.1021/jp0268112
  • Leroy F, Müller-Plathe F. Solid–liquid surface free energy of Lennard-Jones liquid on smooth and rough surfaces computed by molecular dynamics using the phantom-wall method. J Chem Phys. 2010;133:044101–044111. doi: 10.1063/1.3458796
  • Rane K, Kumar V, Errington J. Monte Carlo simulation methods for computing the wetting and drying properties of model systems. J Chem Phys. 2011;135:234102–234115. doi: 10.1063/1.3668137
  • Young T. An essay on the cohesion of fluids. Trans R Soc Lond. 1805;95:65–87. doi: 10.1098/rstl.1805.0005
  • Ewald PP. Die Berechnung optischer und elektrostatischer gitterpotentiale. Ann Phys. 1921;369:253–287. doi: 10.1002/andp.19213690304
  • Friedman HL. Image approximation to reaction field. Mol Phys. 1975;29:1533–1543. doi: 10.1080/00268977500101341
  • van Gunsteren WF, Berendsen HJC, Rullmann JAC. Inclusion of reaction fields in molecular dynamics. Application to liquid water. Faraday Disc Chem Soc. 1978;66:58–70. doi: 10.1039/dc9786600058
  • Barker JA. Reaction field method for polar fluids. In: Ceperley D, editor. The problem of long-range forces in the computer simulation of condensed matter. Vol. 9, NRCC Workshop Proceedings; Menlo Park, USA; 1980. p. 45–46.
  • Míguez JM, Salgado DG, Legido JL, et al. Calculation of interfacial properties using molecular simulation with the reaction field method: results for different water models. J Chem Phys. 2010;132:184102. doi: 10.1063/1.3422528
  • Rajan AG, Strano M, Blankschtein D. Ab initio molecular dynamics and lattice dynamics-based force field for modeling hexagonal boron nitride in mechanical and interfacial applications. J Phys Chem Lett. 2018;9:1584–1591. doi: 10.1021/acs.jpclett.7b03443
  • Tocci G, Joly L, Michaelides A. Friction of water on graphene and hexagonal boron nitride from ab initio methods: very different slippage despite very similar interface structures. Nano Lett. 2014;14:6872–6877. doi: 10.1021/nl502837d
  • Ghoufi A, Deschamps J, Maurin G. Theoretical hydrogen cryostorage in doped MIL-101(Cr) metal-organic frameworks. J Phys Chem C. 2012;116:10504. doi: 10.1021/jp301375s
  • Abascal JLF, Vega C. A general purpose model for the condensed phases of water: TIP4P/2005. J Chem Phys. 2005;123:234505. doi: 10.1063/1.2121687
  • vega C, Abascal J. Simulating water with rigid non-polarizable models: a general perspective. Phys Chem Chem Phys. 2011;13:19663–19688. doi: 10.1039/c1cp22168j
  • Todorov I, Smith W, Trachenko K, et al. DLPOLY3: new dimensions in molecular dynamics simulations via massive parallelism. J Mater Chem. 2006;16:1911. doi: 10.1039/b517931a
  • Hoover WG. Canonical dynamics: equilibrium phase-space distributions. Phys Rev A. 1985;31:1695–1697. doi: 10.1103/PhysRevA.31.1695
  • Ghoufi A, Goujon F, Lachet V, et al. Surface tension of water and acid gases from Monte Carlo simulations. J Chem Phys. 2008;128:154716–154731.
  • Alejandre J, Chapela GA. The surface tension of TIP4P/2005 water model using the Ewald sums for the dispersion interactions. J Chem Phys. 2010;132:014701. doi: 10.1063/1.3279128
  • Yeh IC, Berkowitz M. Ewald summation for systems with slab geometry. J Chem Phys. 1999;111:3155–3162. doi: 10.1063/1.479595
  • Ghoufi A, Malfreyt P. Calculation of the surface tension and pressure components from a non-exponential perturbation method of the thermodynamic route. J Chem Phys. 2012;136:024104–024109. doi: 10.1063/1.3676056
  • Gloor GJ, Jackson G, Blas FJ, et al. Test-area simulation method for the direct determination of the interfacial tension of systems with continuous or discontinuous potentials. J Chem Phys. 2005;123:134703–134721. doi: 10.1063/1.2038827
  • Ibergay C, Ghoufi A, Goujon F, et al. Molecular simulations of the n-alkane liquid–vapor interface: interfacial properties and their long range corrections. Phys Rev E. 2007;75:051602–051619. doi: 10.1103/PhysRevE.75.051602
  • Ghoufi A, Malfreyt P. Recent advances in many body dissipative particles dynamics simulations of liquid–vapor interfaces. Eur Phys J E. 2013;36:99. doi: 10.1140/epje/i2013-13010-7
  • Luzar A, Chandler D. Effect of environment on hydrogen bond dynamics in liquid water. Phys Rev Lett. 1996;76:928–931. doi: 10.1103/PhysRevLett.76.928
  • Orea P, Lopez-Lemus J, Alejandre J. Oscillatory surface tension due to finite-size effects. J Chem Phys. 2005;123:114702.
  • Biscay F, Ghoufi A, Goujon F, et al. Calculation of the surface tension from Monte Carlo simulations: does the model impact on the finite-size effects?. J Chem Phys. 2009;130:184710–184723. doi: 10.1063/1.3132708
  • Scocchi G, Sergi D, D'Angelo C, et al. Wetting and contact-line effects for spherical and cylindrical droplets on graphene layers: a comparative molecular-dynamics investigation. Phys Rev E. 2011;84. doi: 10.1103/PhysRevE.84.061602
  • Tolman RC. The effect of droplet size on surface tension. J Chem Phys. 1949;17:333–337. doi: 10.1063/1.1747247
  • Sampayo JG, Malijevský A, Müller EA, et al. Evidence for the role of fluctuations in the thermodynamics of nanoscale drops and the implications in computations of the surface tension. J Chem Phys. 2010;132:141101. doi: 10.1063/1.3376612
  • Malijevsky A, Jackson G. A perspective on the interfacial properties of nanoscopic liquid drops. J Phys: Condens Matter. 2012;24:464121.
  • Ingebrigtsen T, Toxvaerd S. Contact angles of Lennard-Jones liquids and droplets on planar surfaces. J Phys Chem C. 2007;111:8518–8523. doi: 10.1021/jp0676235

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.