212
Views
3
CrossRef citations to date
0
Altmetric
Articles

Wang–Landau approach to the simulation of water clusters

&
Pages 241-248 | Received 04 May 2018, Accepted 24 Jul 2018, Published online: 08 Aug 2018

References

  • Buch V, Paul Devlin J. Water in confining geometries. Berlin: Springer; 2003.
  • Yin J. Novel parallel Monte Carlo simulations of systems of interacting classical particles [Ph.D. diss.]. Athens (GA): University of Georgia; 2011.
  • Wales DJ, Hodges MP. Global minima of water clusters (H2O)n, n≤21, described by an empirical potential. Chem Phys Lett. 1998;286:65–72. doi: 10.1016/S0009-2614(98)00065-7
  • Kabrede H. Using vibrational modes in the search for global minima of atomic and molecular clusters. Chem Phys Lett. 2006;430:336–339 doi: 10.1016/j.cplett.2006.08.136
  • Takeuchi H. Development of an efficient geometry optimization method for water clusters. J Chem Inf Model. 2008;48:2226–2233. doi: 10.1021/ci800238w
  • Kazachenko S, Thakkar AJ. New algorithms for locating global minima of molecular clusters: A progress report and test applications to water clusters (H2O)n, n≤34. AIP Conf Proc. 2009;1108:90.
  • Kazachenko S, Thakkar AJ. Improved minima-hopping. TIP4P water clusters (H2O)n with n ≤ 37. Chem Phys Lett. 2009;476:120.
  • Niesse JA, Mayne HR. Global optimization of atomic and molecular clusters using the space? Fixed modified genetic algorithm method. J Comput Chem. 1997;18:1233.
  • Kabrede H, Hentschke R. Global minima of water clusters (H2O)N , N≤25, described by three empirical potentials. J Phys Chem B. 2003;107:3914–3920. doi: 10.1021/jp027783q
  • Tang M, Hu C, Lv Z, et al. Ab initio study of ionized water radical cation(H2O)8+ in combination with the particle swarm optimization method. J Phys Chem A. 2016;120:9489–9499. doi: 10.1021/acs.jpca.6b09866
  • Li G, Hu C, Tang M, et al. Ab initio investigation of possible candidate structures and properties of water cluster (H2O)7+ via particle swarm optimization method. Comput Theor Chem. 2017;1099:123–132. doi: 10.1016/j.comptc.2016.11.028
  • Shi L, Tang M, Chen X, et al. Ab initio study of cationic water cluster (H2O)8+ via particle swarm optimization algorithm. Comput Theor Chem. 2017;1120:102–111. doi: 10.1016/j.comptc.2017.09.020
  • Tsai CJ, Jordan KD. Monte Carlo simulation of (H2O)8: evidence for a low-energy S4 structure and characterization of the solid ↔? liquid transition. J Chem Phys. 1991;95:3850–3853. doi: 10.1063/1.460788
  • Pedulla JM, Jordan KD. Melting behavior of the (H2O)6 and (H2O)8 clusters. Chem Phys. 1998;239:593–601. doi: 10.1016/S0301-0104(98)00363-2
  • Tharrington AN, Jordan KD. Parallel-tempering Monte Carlo study of (H2O)n=6−9. J Phys Chem A. 2003;107:7380–7389. doi: 10.1021/jp030355f
  • Vitek A, Kalus R. Two-dimensional multiple-histogram method applied to isothermal–isobaric Monte Carlo simulations of molecular clusters. Comput Phys Commun. 2014;185:1595–1605. doi: 10.1016/j.cpc.2014.02.024
  • Weinhold F. Kinetics and mechanism of water cluster equilibria. J Phys Chem B. 2014;118:7792–7798. doi: 10.1021/jp411475s
  • Zen A, Lue Y, Mazzola G, et al. Ab initio molecular dynamics simulation of liquid water by quantum Monte Carlo. J Chem Phys. 2015;142:144111. doi: 10.1063/1.4917171
  • Yin J, Landau DP. Structural properties and thermodynamics of water clusters: a Wang–Landau study. J Chem Phys. 2011;134:074501.
  • Yin J, Landau DP. Massively parallel Wang–Landau sampling on multiple GPUs. Comput Phys Commun. 2012;183:1568.
  • Maerzke KA, Gai L, Cummings PT. Incorporating configurational-bias Monte Carlo into the Wang–Landau algorithm for continuous molecular systems. J Chem Phys. 2012;137:204105. doi: 10.1063/1.4766354
  • Du S, Yoo S, Li J. Comparison of the melting temperatures of classical and quantum water potential models. Front Phys. 2017;5:34. doi: 10.3389/fphy.2017.00034
  • van Maaren PJ, van der Spoel D. Molecular dynamics simulations of water with novel shell-model potentials. J Phys Chem. 2001;105:2618–2626. doi: 10.1021/jp003843l
  • Kiyohara K, Gubbins KE, Panagiotopoulos AZ. Phase coexistence properties of polarizable water models. Mol Phys. 1998;94:803–808. doi: 10.1080/00268979809482372
  • Rick SW. Simulations of ice and liquid water over a range of temperatures using the fluctuating charge model. J Chem Phys. 2001;114:2276–2283. doi: 10.1063/1.1336805
  • Berendsen HJC, Grigera JR, Straatsma TP. The missing term in effective pair potentials. J Phys Chem. 1987;91:6269–6271. doi: 10.1021/j100308a038
  • Jorgensen WL, Chandrasekhar J, Madura JD, et al. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79:926–935. doi: 10.1063/1.445869
  • Jorgensen WL, Madura JD. Temperature and size dependence for Monte Carlo simulations of TIP4P water. Mol Phys. 1985;56:1381–1392. doi: 10.1080/00268978500103111
  • Abascal JLF, Vega C. A general purpose model for the condensed phases of water: TIP4P/2005. J Chem Phys. 2005;123:234505. doi: 10.1063/1.2121687
  • Paricaud P, Predota M, Chialvo AA, et al. From dimer to condensed phases at extreme conditions: accurate predictions of the properties of water by a Gaussian charge polarizable model. J Chem Phys. 2005;122:244511. doi: 10.1063/1.1940033
  • Tainter CJ, Shi L, Skinner JL. Reparametrized E3B (explicit three-body) water model using the TIP4P/2005 model as a reference. J Chem Theor Comput. 2015;11:2268–2277. doi: 10.1021/acs.jctc.5b00117
  • Ganzenmüller G, Camp PJ. Applications of Wang–Landau sampling to determine phase equilibria in complex fluids. J Chem Phys. 2007;127:154504. doi: 10.1063/1.2794042
  • Hansmann UHE, Okamoto Y, Eisenmenger F. Molecular dynamics, Langevin and hybrid Monte Carlo simulations in a multicanonical ensemble. Chem Phys Lett. 1996;259:321–330. doi: 10.1016/0009-2614(96)00761-0
  • Maheshwary S, Patel N, Sathyamurthy N, et al. Structure and stability of water clusters (H2O)n, n = 8−20: an ab initio investigation. J Phys Chem A. 2001;105:10525–10537. doi: 10.1021/jp013141b
  • Furtado JP, Rahalkar AP, Shanker S, et al. Facilitating minima search for large water clusters at the mp2 level via molecular tailoring. J Phys Chem Lett. 2012;3:2253–2258 doi: 10.1021/jz300663u
  • Press W, Teukolsky S, Vetterling W, et al. Numerical recipes in C. New York: Cambridge University Press; 1992.
  • Vogel T, Li YW, Wüst T, et al. Generic, hierarchical framework for massively parallel Wang–Landau sampling. Phys Rev Lett. 2013;110:210603.
  • Wales DJ, Hodges MP. Global minima of water clusters (H2O)n , N≤21, described by an empirical potential. Chem Phys Lett. 1998;286:65–72. doi: 10.1016/S0009-2614(98)00065-7
  • Takeuchi H. Development of an efficient geometry optimization method for water clusters. J Chem Inf Model. 2008;48:2226–2233. doi: 10.1021/ci800238w
  • Kabrede H, Hentschke R. Global minima of water clusters (H2O)N, N≤25, described by three empirical potentials. J Phys Chem B. 2003;107:3914–3920. doi: 10.1021/jp027783q
  • Kiss PT, Baranyai A. Clusters of classical water models. J Chem Phys. 2009;131:204310.
  • Tainter CJ, Skinner JL. The water hexamer: three-body interactions, structures, energetics, and OH-stretch spectroscopy at finite temperature. J Chem Phys. 2012;137:104304. doi: 10.1063/1.4746157
  • Fanourgakis GS, Xantheas SS. Development of transferable interaction potentials for water. V. Extension of the flexible, polarizable, thole-type model potential (TTM3-F, v. 3.0) to describe the vibrational spectra of water clusters and liquid water. J Chem Phys. 2008;128:074506. doi: 10.1063/1.2837299
  • Qian P, Song W, Lu L, et al. Ab initio investigation of water clusters (H2O)n (n = 2–34). Int J Quant Chem. 2009;110:1923.
  • Miliordos E, Aprá E, Xantheas SS. Optimal geometries and harmonic vibrational frequencies of the global minima of water clusters (H2O)n, n = 2−6, and several hexamer local minima at the CCSD(T) level of theory. J Chem Phys. 2013;139:114302. doi: 10.1063/1.4820448
  • Gregory JK, Clary DC. Structure of water clusters. The contribution of many-body forces, monomer relaxation, and vibrational zero-point energy. J Phys Chem. 1996;100:18014–18022. doi: 10.1021/jp9616019
  • Tissandier MD, Singer SJ, Coe JV. Enumeration and evaluation of the water hexamer cage structure. J Phys Chem A. 2000;104:752–757. doi: 10.1021/jp992711t
  • Wang Y, Babin V, Bowman JM, et al. The water hexamer: cage, prism, or both. Full dimensional quantum simulations say both. J Am Chem Soc. 2012;134:11116–11119. doi: 10.1021/ja304528m
  • Miliordos E, Xantheas SS. An accurate and efficient computational protocol for obtaining the complete basis set limits of the binding energies of water clusters at the MP2 and CCSD(T) levels of theory: application to (H2O)m, m = 2−6,8,11,16, and 17. J Chem Phys. 2015;142:234303.
  • Kaneko T, Akimoto T, Yasuoka K, et al. Size-dependent phase changes in water clusters. J Chem Theory Comput. 2011;7:3083–3087. doi: 10.1021/ct200458m
  • Vitek A, Kalus R. Phase transitions in free water nanoparticles. theoretical modeling of [H2O]48 and [H2O]118. Phys Chem Chem Phys. 2015;17:10532–10537. doi: 10.1039/C4CP04909H

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.