4,377
Views
120
CrossRef citations to date
0
Altmetric
Articles

Self-diffusion coefficient of bulk and confined water: a critical review of classical molecular simulation studies

ORCID Icon, ORCID Icon, ORCID Icon, , & ORCID Icon
Pages 425-453 | Received 31 May 2018, Accepted 07 Aug 2018, Published online: 06 Sep 2018

References

  • Bellissent-Funel MC, Hassanali A, Havenith M, et al. Water determines the structure and dynamics of proteins. Chem Rev. 2016;116:7673–7697.
  • Agmon N, Bakker HJ, Campen RK, et al. Protons and hydroxide ions in aqueous systems. Chem Rev. 2016;116:7642–7672.
  • Björneholm O, Hansen MH, Hodgson A, et al. Water at interfaces. Chem Rev. 2016;116:7698–7726.
  • Vega C, Abascal JLF. Simulating water with rigid non-polarizable models: a general perspective. Phys Chem Chem Phys. 2011;13:19663–19688.
  • Vega C. Water: one molecule, two surfaces, one mistake. Mol Phys. 2015;113:1145–1163.
  • Gallo P, Amann-Winkel K, Angell CA, et al. Water: a tale of two liquids. Chem Rev. 2016;116:7463–7500.
  • [cited 2018 May 21]. Available from: http://www.lsbu.ac.uk/water/anmlies.html.
  • Frenkel D, Smit B. Understanding molecular simulation: from algorithms to applications. 2nd ed. San Diego (CA): Academic Press; 2002.
  • Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117:1–19.
  • Lindahl E, Hess B, van der Spoel D. GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model. 2001;7:306–317.
  • Debenedetti PG, Stillinger Frank H. Supercooled liquids and the glass transition. Nature. 2001;410:259–267.
  • Stanley HE, Kumar P, Franzese G, et al. Liquid polyamorphism: possible relation to the anomalous behaviour of water. Eur Phys J Spec Top. 2008;161:1–17.
  • Stanley HE, Kumar P, Han S, et al. Heterogeneities in confined water and protein hydration water. J Phys Condens Matter. 2009;21:504105.
  • Stanley HE, Buldyrev SV, Franzese G, et al. Liquid polymorphism: water in nanoconfined and biological environments. J Phys Condens Matter. 2010;22:284101.
  • Bartels-Rausch T, Bergeron V, Cartwright JHE, et al. Ice structures, patterns, and processes: a view across the icefields. Rev Mod Phys. 2012;84:885–944.
  • Wallqvist A, Mountain RD. Molecular models of water: derivation and description. Rev Comput Chem. 2007;13:183–247.
  • Striolo A, Michaelides A, Joly L. The carbon-water interface: modeling challenges and opportunities for the water-energy nexus. Annu Rev Chem Biomol Eng. 2016;7:533–556.
  • Gillan MJ, Alfè D, Michaelides A. Perspective: how good is DFT for water? J Chem Phys. 2016;144:130901.
  • Cisneros GA, Wikfeldt KT, Ojamäe L, et al. Modeling molecular interactions in water: from pairwise to many-body potential energy functions. Chem Rev. 2016;116:7501–7528.
  • Ceriotti M, Fang W, Kusalik PG, et al. Nuclear quantum effects in water and aqueous systems: experiment, theory, and current challenges. Chem Rev. 2016;116:7529–7550.
  • Fransson T, Harada Y, Kosugi N, et al. X-ray and electron spectroscopy of water. Chem Rev. 2016;116:7551–7569.
  • Amann-Winkel K, Bellissent-Funel M-C, Bove LE, et al. X-ray and neutron scattering of water. Chem Rev. 2016;116:7570–7589.
  • Perakis F, De Marco L, Shalit A, et al. Vibrational spectroscopy and dynamics of water. Chem Rev. 2016;116:7590–7607.
  • Cerveny S, Mallamace F, Swenson J, et al. Confined water as model of supercooled water. Chem Rev. 2016;116:7608–7625.
  • Liu H, Macedo EA. Accurate correlations for the self-diffusion coefficients of CO2, CH4, C2H4, H2O, and D2O over wide ranges of temperature and pressure. J Supercrit Fluids. 1995;8:310–317.
  • Krishna R, Van Baten JM. The darken relation for multicomponent diffusion in liquid mixtures of linear alkanes: an investigation using molecular dynamics (MD) simulations. Ind Eng Chem Res. 2005;44:6939–6947.
  • Rahman A, Stillinger FH. Molecular dynamics study of liquid water. J Chem Phys. 1971;55:3336–3359.
  • Stillinger FH, Rahman A. Improved simulation of liquid water by molecular dynamics. J Chem Phys. 1974;60:1545–1557.
  • Rahman A, Stillinger FH, Lemberg HL. Study of a central force model for liquid water by molecular dynamics. J Chem Phys. 1975;63:5223–5230.
  • Stillinger FH, Rahman A. Revised central force potentials for water. J Chem Phys. 1978;68:666–670.
  • Impey RW, Madden PA, McDonald IR. Spectroscopic and transport properties of water. Mol Phys. 1982;46:513–539.
  • Jorgensen WL, Chandrasekhar J, Madura JD, et al. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79:926–935.
  • Jancsǒ G, Bopp P, Heinzinger K. Molecular dynamics study of high-density liquid water using a modified central-force potential. Chem Phys. 1984;85:377–387.
  • Ferrario M, Tani A. A molecular dynamics study of the TIP4P model of water. Chem Phys Lett. 1985;121:182–186.
  • Lie G, Clementi E. Molecular-dynamics simulation of liquid water with an ab initio flexible water-water interaction potential. Phys Rev A. 1986;33:2679–2693.
  • Neumann M. Dielectric relaxation in water. Computer simulations with the TIP4P potential. J Chem Phys. 1986;85:1567–1580.
  • Wojcik M, Clementi E. Single molecule dynamics of three body water. J Chem Phys. 1986;85:3544–3549.
  • Anderson J, Ullo J, Yip S. Molecular dynamics simulation of dielectric properties of water. J Chem Phys. 1987;87:1726–1732.
  • Berendsen HJC, Grigera JR, Straatsma TP. The missing term in effective pair potentials. J Phys Chem. 1987;91:6269–6271.
  • Reddy MR, Berkowitz M. Structure and dynamics of high-pressure TIP4P water. J Chem Phys. 1987;87:6682–6686.
  • Teleman O, Jönsson B, Engström S. A molecular dynamics simulation of a water model with intramolecular degrees of freedom. Mol Phys. 1987;60:193–203.
  • Ahlström P, Wallqvist A, Engström S, et al. A molecular dynamics study of polarizable water. Mol Phys. 1989;68:563–581.
  • Watanabe K, Klein ML. Effective pair potentials and the properties of water. Chem Phys. 1989;131:157–167.
  • Caldwell J, Kollman PA, Dang LX. Implementation of nonadditive intermolecular potentials by use of molecular dynamics: development of a water-water potential and water-ion cluster interactions. J Am Chem Soc. 1990;112:9144–9147.
  • Wallqvist A, Ahlstrom P, Karlstroms G. A new intermolecular energy calculation scheme: applications to potentlal surface and liquid properties of water. J Phys Chem. 1990;94:1649–1656.
  • Ruff I, Diestler DJ. Isothermal-isobaric molecular dynamics simulation of liquid water. J Chem Phys. 1990;93:2032–2042.
  • Sprik M, Klein ML, Watanabe K. Solvent polarization and hydration of the chlorine anion. J Phys Chem. 1990;94:6483–6488.
  • Straatsma TP, McCammon JA. Molecular dynamics simulations with interaction potentials including polarization development of a noniterative method and application to water. Mol Simul. 1990;5:181–192.
  • Barrat JL, McDonald IR. The role of molecular flexibility in simulations of water. Mol Phys. 1990;70:535–539.
  • Brodholt J, Wood B. Molecular dynamics of water at high temperatures and pressures. Geochim Cosmochim Acta. 1990;54:2611–2616.
  • Frattini R, Ricci MA, Ruocco G, et al. Temperature evolution of single particle correlation functions of liquid water. J Chem Phys. 1990;92:2540–2547.
  • Sprik M. Hydrogen bonding and the static dielectric constant in liquid water. J Chem Phys. 1991;95:6762–6769.
  • Zhu S, Singh S, Robinson GW, et al. A new flexible/polarizable water model. J Chem Phys. 1991;95:2791–2799.
  • Zhu SB, Yao S, Zhu JB, et al. A flexible/polarizable simple point charge water model. J Phys Chem. 1991;95:6211–6217.
  • Wallqvist A, Teleman O. Properties of flexible water models. Mol Phys. 1991;74:515–533.
  • Smith DE, Haymet ADJ. Structure and dynamics of water and aqueous solutions: the role of flexibility. J Chem Phys. 1992;96:8450–8459.
  • Van Belle D, Froeyen M, Lippens G, et al. Molecular dynamics simulation of polarizable water by an extended lagrangian method. Mol Phys. 1992;77:239–255.
  • Sciortino F, Geiger A, Stanley HE. Network defects and molecular mobility in liquid water. J Chem Phys. 1992;96:3857–3865.
  • Guissani Y, Guillot B. A computer simulation study of the liquid–vapor coexistence curve of water. J Chem Phys. 1993;98:8221–8235.
  • Rick SW, Stuart SJ, Berne BJ. Dynamical fluctuating charge force fields: application to liquid water. J Chem Phys. 1994;101:6141–6156.
  • Smith DE, Dang LX. Computer simulations of NaCl association in polarizable water. J Chem Phys. 1994;100:3757–3766.
  • Svishchev IM, Kusalik P. Dynamics in liquid H2O, D2O, and T2O: a comparative simulation study. J Phys Chem. 1994;98:728–733.
  • Padro JA, Marti J, Guardia E. Molecular dynamics simulation of liquid water at 523K. J Phys Condens Matt. 1994;6:2283–2290.
  • Báez LA, Clancy P. Existence of a density maximum in extended simple point charge water. J Chem Phys. 1994;101:9837–9840.
  • Åstrand PO, Linse P, Karlström G. Molecular dynamics study of water adopting a potential function with explicit atomic dipole moments and anisotropic polarizabilities. Chem Phys. 1995;191:195–202.
  • Soetens JC, Millot C. Effect of distributing multipoles and polarizabilities on molecular dynamics simulations of water. Chem Phys Lett. 1995;235:22–30.
  • Duan Z, Møller N, Weare JH. Molecular dynamics simulation of water properties using RWK2 potential: from clusters to bulk water. Geochim Cosmochim Acta. 1995;59:3273–3283.
  • Mountain RD. Comparison of a fixed-charge and a polarizable water model. J Chem Phys. 1995;103:3084–3090.
  • Brodholt J, Sampoli M, Vallauri R. Parameterizing a polarizable intermolecular potential for water. Mol Phys. 1995;86:149–158.
  • Svishchev IM, Kusalik PG, Wang J, et al. Polarizable point-charge model for water: results under normal and extreme conditions. J Chem Phys. 1996;105:4742–4750.
  • Gallo P, Sciortino F, Tartaglia P, et al. Slow dynamics of water molecules in supercooled states. Phys Rev Lett. 1996;76:2730–2733.
  • Sciortino F, Gallo P, Tartaglia P, et al. Supercooled water and the kinetic glass transition. Phys Rev E. 1996;54:6331–6343.
  • Taylor RS, Dang LX, Garrett BC. Molecular dynamics simulations of the liquid/vapor interface of SPC/E water. J Phys Chem. 1996;100:11720–11725.
  • Bagchi K, Balasubramanian S, Klein ML. The effects of pressure on structural and dynamical properties of associated liquids: molecular dynamics calculations for the extended simple point charge model of water. J Chem Phys. 1997;107:8561–8567.
  • Dang LX, Chang TM. Molecular dynamics study of water clusters, liquid, and liquid-vapor interface of water with many-body potentials. J Chem Phys. 1997;106:8149–8159.
  • Levitt M, Hirshberg M, Sharon R, et al. Calibration and testing of a water model for simulation of the molecular dynamics of proteins and nucleic acids in solution. J Phys Chem B. 1997;101:5051–5061.
  • Lobaugh J, Voth GA. A quantum model for water: equilibrium and dynamical properties. J Chem Phys. 1997;106:2400–2410.
  • de Leeuw N, Parker S. Molecular-dynamics simulation of MgO surfaces in liquid water using a shell-model potential for water. Phys Rev B. 1998;58:13901–13908.
  • Starr FW, Sciortino F, Stanley HE. Dynamics of simulated water under pressure. Phys Rev B. 1999;60:6757–6768.
  • Svishchev IM, Zassetsky AY. Self-diffusion process in water: spatial picture of single-particle density fluctuations. J Chem Phys. 2000;113:7432–7436.
  • Nymand TM, Linse P. Molecular dynamics simulations of polarizable water at different boundary conditions. J Chem Phys. 2000;112:6386–6395.
  • Guo G-J, Zhang Y-G. Equilibrium molecular dynamics calculation of the bulk viscosity of liquid water. Mol Phys. 2001;99:283–289.
  • Mahoney MW, Jorgensen WL. Diffusion constant of the TIP5P model of liquid water. J Chem Phys. 2001;114:363–366.
  • Stern HA, Rittner F, Berne BJ, et al. Combined fluctuating charge and polarizable dipole models: application to a five-site water potential function. J Chem Phys. 2001;115:2237–2251.
  • van Maaren PJ, van der Spoel D. Molecular dynamics simulations of water with novel shell-model potentials. J Phys Chem B. 2001;105:2618–2626.
  • Lefohn AE, Ovchinnikov M, Voth GA. A multistate empirical valence bond approach to a polarizable and flexible water model. J Phys Chem B. 2001;105:6628–6637.
  • Guillot B, Guissani Y. How to build a better pair potential for water. J Chem Phys. 2001;114:6720–6733.
  • Errington J, Debenedetti P. Relationship between structural order and the anomalies of liquid water. Nature. 2001;409:318–321.
  • Burnham CJ, Xantheas SS. Development of transferable interaction models for water. III. reparametrization of an all-atom polarizable rigid model (TTM2–R) from first principles. J Chem Phys. 2002;116:1500–1510.
  • Guo G-J, Zhang Y-G, Refson K, et al. Viscosity and stress autocorrelation function in supercooled water: a molecular dynamics study. Mol Phys. 2002;100:2617–2627.
  • English NJ, MacElroy JMD. Atomistic simulations of liquid water using Lekner electrostatics. Mol Phys. 2002;100:3753–3769.
  • Nieto-Draghi C, Bonet Avalos J, Rousseau B. Dynamic and structural behavior of different rigid nonpolarizable models of water. J Chem Phys. 2003;118:7954–7964.
  • Yamaguchi T, Chong S-H, Hirata F. Theoretical study of the molecular motion of liquid water under high pressure. J Chem Phys. 2003;119:1021–1034.
  • Tan ML, Fischer JT, Chandra A, et al. A temperature of maximum density in soft sticky dipole water. Chem Phys Lett. 2003;376:646–652.
  • Yu H, Hansson T, van Gunsteren WF. Development of a simple, self-consistent polarizable model for liquid water. J Chem Phys. 2003;118:221–234.
  • Jeon J, Lefohn AE, Voth GA. An improved polarflex water model. J Chem Phys. 2003;118:7504–7518.
  • English NJ, MacElroy JMD. Hydrogen bonding and molecular mobility in liquid water in external electromagnetic fields. J Chem Phys. 2003;119:11806–11813.
  • Ren P, Ponder JW. Polarizable atomic multipole water model for molecular mechanics simulation. J Phys Chem B. 2003;107:5933–5947.
  • Spångberg D, Hermansson K. Effective three-body potentials for Li+ (aq) and Mg2+ (aq). J Chem Phys. 2003;119:7263–7281.
  • Amira S, Spångberg D, Hermansson K. Derivation and evaluation of a flexible SPC model for liquid water. Chem Phys. 2004;303:327–334.
  • Horn HW, Swope WC, Pitera JW, et al. Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. J Chem Phys. 2004;120:9665–9678.
  • Yeh IC, Hummer G. System-size dependence of diffusion coefficients and viscosities from molecular dynamics simulations with periodic boundary conditions. J Phys Chem B. 2004;108:15873–15879.
  • Ren P, Ponder JW. Temperature and pressure dependence of the AMOEBA water model. J Phys Chem B. 2004;108:13427–13437.
  • Saint-Martin H, Hernández-Cobos J, Ortega-Blake I. Water models based on a single potential energy surface and different molecular degrees of freedom. J Chem Phys. 2005;122:224509.
  • Abascal JLF, Vega C. A general purpose model for the condensed phases of water: TIP4P/2005. J Chem Phys. 2005;123:234505.
  • Xu L, Kumar P, Buldyrev SV, et al. Relation between the Widom line and the dynamic crossover in systems with a liquid–liquid phase transition. Proc Natl Acad Sci USA. 2005;102:16558–16562.
  • Lamoureux G, Harder E, Vorobyov I, et al. A polarizable model of water for molecular dynamics simulations of biomolecules. Chem Phys Lett. 2006;418:245–249.
  • Wu Y, Tepper HL, Voth GA. Flexible simple point-charge water model with improved liquid-state properties. J Chem Phys. 2006;124:024503.
  • Paesani F, Zhang W, Case DA, et al. An accurate and simple quantum model for liquid water. J Chem Phys. 2006;125:184507.
  • Fanourgakis GS, Xantheas SS. The flexible, polarizable, Thole-type interaction potential for water (TTM2-F) revisited. J Phys Chem A. 2006;110:4100–4106.
  • Donchev AG, Galkin NG, Illarionov AA, et al. Water properties from first principles: simulations by a general-purpose quantum mechanical polarizable force field. Proc Natl Acad Sci USA. 2006;103:8613–8617.
  • Mittal J, Errington JR, Truskett TM. Quantitative link between single-particle dynamics and static structure of supercooled liquids. J Phys Chem B. 2006;110:18147–18150.
  • Yoshida K, Matubayasi N, Nakahara M. Self-diffusion of supercritical water in extremely low-density region. J Chem Phys. 2006;125:074307.
  • Hofmann DWM, Kuleshova L, D’Aguanno B. A new reactive potential for the molecular dynamics simulation of liquid water. Chem Phys Lett. 2007;448:138–143.
  • Defusco A, Schofield DP, Jordan KD. Comparison of models with distributed polarizable sites for describing water clusters. Mol Phys. 2007;105:2681–2696.
  • Yoshida K, Matubayasi N, Nakahara M. Solvation shell dynamics studied by molecular dynamics simulation in relation to the translational and rotational dynamics of supercritical water and benzene. J Chem Phys. 2007;127:174509.
  • Kumar P, Buldyrev SV, Becker SR, et al. Relation between the Widom line and the breakdown of the Stokes-Einstein relation in supercooled water. Proc Natl Acad Sci USA. 2007;104:9575–9579.
  • Kolafa J. A polarizable three-site water model with intramolecular polarizability. Collect Czechoslov Chem Commun. 2008;73:507–517.
  • Mankoo PK, Keyes T. POLIR: polarizable, flexible, transferable water potential optimized for IR spectroscopy. J Chem Phys. 2008;129:034504.
  • Liem SY, Popelier PLA. Properties and 3D structure of liquid water: a perspective from a high-rank multipolar electrostatic potential. J Chem Theory Comput. 2008;4:353–365.
  • Kumar R, Skinner JL. Water simulation model with explicit three-molecule interactions. J Phys Chem B. 2008;112:8311–8318.
  • Akin-Ojo O, Song Y, Wang F. Developing ab initio quality force fields from condensed phase quantum-mechanics/molecular-mechanics calculations through the adaptive force matching method. J Chem Phys. 2008;129:064108.
  • Vega C, Abascal JLF, Conde MM, et al. What ice can teach us about water interactions: a critical comparison of the performance of different water models. Faraday Discuss. 2009;141:251–276.
  • Walsh TR, Liang T. A multipole-based water potential with implicit polarization for biomolecular simulations. J Comput Chem. 2009;30:893–899.
  • Bauer BA, Warren GL, Patel S. Incorporating phase-dependent polarizability in nonadditive electrostatic models for molecular dynamics simulations of the aqueous liquid vapor interface. J Chem Theory Comput. 2009;5:359–373.
  • Bauer BA, Patel S. Properties of water along the liquid-vapor coexistence curve via molecular dynamics simulations using the polarizable TIP4P-QDP-LJ water model. J Chem Phys. 2009;131:084709.
  • Liu J, Miller WH, Paesani F, et al. Quantum dynamical effects in liquid water: a semiclassical study on the diffusion and the infrared absorption spectrum. J Chem Phys. 2009;131:164509.
  • Kunz A-PE, van Gunsteren WF. Development of a nonlinear classical polarization model for liquid water and aqueous solutions: COS/D. J Phys Chem A. 2009;113:11570–11579.
  • Akin-Ojo O, Wang F. Improving the point-charge description of hydrogen bonds by adaptive force matching. J Phys Chem B. 2009;113:1237–1240.
  • Molinero V, Moore EB. Water modeled as an intermediate element between carbon and silicon. J Phys Chem B. 2009;113:4008–4016.
  • Pi HL, Aragones JL, Vega C, et al. Anomalies in water as obtained from computer simulations of the TIP4P/2005 model: density maxima, and density, isothermal compressibility and heat capacity minima. Mol Phys. 2009;107:365–374.
  • Te JA, Ichiye T. Temperature and pressure dependence of the optimized soft-sticky dipole-quadrupole-octupole water model. J Chem Phys. 2010;132:114511.
  • Shaik MS, Liem SY, Popelier PLA. Properties of liquid water from a systematic refinement of a high-rank multipolar electrostatic potential. J Chem Phys. 2010;132:174504.
  • Chiu S, Scott HL, Jakobsson E. A coarse-grained model based on morse potential for water and n -alkanes. J Chem Theory Comput. 2010;6:851–863.
  • Karamertzanis PG, Raiteri P, Galindo A. The use of anisotropic potentials in modeling water and free energies of hydration. J Chem Theory Comput. 2010;6:1590–1607.
  • Darre L, Machado MR, Dans PD, et al. Another coarse grain model for aqueous solvation: WAT FOUR? J Chem Theory Comput. 2010;6:3793–3807.
  • Fuhrmans M, Sanders BP, Marrink SJ, et al. Effects of bundling on the properties of the SPC water model. Theor Chem Acc. 2010;125:335–344.
  • Chopra R, Truskett TM, Errington JR. On the use of excess entropy scaling to describe single-molecule and collective dynamic properties of hydrocarbon isomer fluids. J Phys Chem B. 2010;114:16487–16493.
  • Guevara-Carrion G, Vrabec J, Hasse H. Prediction of self-diffusion coefficient and shear viscosity of water and its binary mixtures with methanol and ethanol by molecular simulation. J Chem Phys. 2011;134:074508.
  • Tainter CJ, Pieniazek PA, Lin YS, et al. Robust three-body water simulation model. J Chem Phys. 2011;134:184501.
  • González MA, Abascal JLF. A flexible model for water based on TIP4P/2005. J Chem Phys. 2011;135:224516.
  • Hasegawa T, Tanimura Y. A polarizable water model for intramolecular and intermolecular vibrational spectroscopies. J Phys Chem B. 2011;115:5545–5553.
  • Alejandre J, Chapela GA, Saint-Martin H, et al. A non-polarizable model of water that yields the dielectric constant and the density anomalies of the liquid: TIP4Q. Phys Chem Chem Phys. 2011;13:19728–19740.
  • Viererblová L, Kolafa J. A classical polarizable model for simulations of water and ice. Phys Chem Chem Phys. 2011;13:19925–19935.
  • Orsi M, Essex JW. The ELBA force field for coarse-grain modeling of lipid membranes. PLoS One. 2011;6:e28637.
  • Wang J, Hou T. Application of molecular dynamics simulations in molecular property prediction II: diffusion coefficient. J Comput Chem. 2011;32:3505–3519.
  • Qvist J, Schober H, Halle B. Structural dynamics of supercooled water from quasielastic neutron scattering and molecular simulations. J Chem Phys. 2011;134:144508.
  • Raabe G, Sadus RJ. Molecular dynamics simulation of the effect of bond flexibility on the transport properties of water. J Chem Phys. 2012;137:104512.
  • Leontyev I V, Stuchebrukhov AA. Polarizable mean-field model of water for biological simulations with AMBER and CHARMM force fields. J Chem Theory Comput. 2012;8:3207–3216.
  • Darré L, Tek A, Baaden M, et al. Mixing atomistic and coarse grain solvation models for MD simulations: let WT4 handle the bulk. J Chem Theory Comput. 2012;8:3880–3894.
  • Babin V, Medders GR, Paesani F. Toward a universal water model: first principles simulations from the dimer to the liquid phase. J Phys Chem Lett. 2012;3:3765–3769.
  • Tazi S, Boan A, Salanne M, et al. Diffusion coefficient and shear viscosity of rigid water models. J Phys Condens Matter. 2012;24:284117.
  • Gallo P, Rovere M. Mode coupling and fragile to strong transition in supercooled TIP4P water. J Chem Phys. 2012;137:164503.
  • Rozmanov D, Kusalik PG. Transport coefficients of the TIP4P-2005 water model. J Chem Phys. 2012;136:044507.
  • Zlenko D V. Computing the self-diffusion coefficient for TIP4P water. Biophysics (Oxf). 2012;57:127–132.
  • Lee SH. Temperature dependence on structure and self-diffusion of water: a molecular dynamics simulation study using SPC/E model. Bull Korean Chem Soc. 2013;34:3800–3804.
  • Chen Y, Li AH, Wang Y, et al. Molecular dynamics simulations of liquid water structure and diffusivity. Chinese J Phys. 2013;51:1218–1229.
  • Akin-Ojo O, Szalewicz K. How well can polarization models of pairwise nonadditive forces describe liquid water? J Chem Phys. 2013;138:024316.
  • Yu W, Lopes PEM, Roux B, et al. Six-site polarizable model of water based on the classical drude oscillator. J Chem Phys. 2013;138:034508.
  • Kiss PT, Baranyai A. A systematic development of a polarizable potential of water. J Chem Phys. 2013;138:204507.
  • Corsetti F, Artacho E, Soler JM, et al. Room temperature compressibility and diffusivity of liquid water from first principles. J Chem Phys. 2013;139:194502.
  • Han J, Mazack MJM, Zhang P, et al. Quantum mechanical force field for water with explicit electronic polarization. J Chem Phys. 2013;139:054503.
  • Baker CM, Best RB. Matching of additive and polarizable force fields for multiscale condensed phase simulations. J Chem Theory Comput. 2013;9:2826–2837.
  • Nagarajan A, Junghans C, Matysiak S. Multiscale simulation of liquid water using a four-to-one mapping for coarse-graining. J Chem Theory Comput. 2013;9:5168–5175.
  • Stukan MR, Asmadi A, Abdallah W. Bulk properties of SWM4-NDP water model at elevated temperature and pressure. J Mol Liq. 2013;180:65–69.
  • Tröster P, Lorenzen K, Schwörer M, et al. Polarizable water models from mixed computational and empirical optimization. J Phys Chem B. 2013;117:9486–9500.
  • Wang L-P, Head-Gordon T, Ponder JW, et al. Systematic improvement of a classical molecular model of water. J Phys Chem B. 2013;117:9956–9972.
  • Arismendi-Arrieta D, Medina JS, Fanourgakis GS, et al. Simulating liquid water for determining its structural and transport properties. Appl Radiat Isot. 2014;83:115–121.
  • Braun D, Boresch S, Steinhauser O. Transport and dielectric properties of water and the influence of coarse-graining: transport and dielectric properties of water and the influence of coarse-graining: comparing BMW, SPC/E, and TIP3P models. J Chem Phys. 2014;140:064107.
  • Bachmann SJ, Van Gunsteren WF. An improved simple polarisable water model for use in biomolecular simulation. J Chem Phys. 2014;141:22D515.
  • Fuentes-Azcatl R, Alejandre J. Non-polarizable force field of water based on the dielectric constant: TIP4P/ε. J Phys Chem B. 2014;118:1263–1272.
  • Tröster P, Lorenzen K, Tavan P. Polarizable six-point water models from computational and empirical optimization. J Phys Chem B. 2014;118:1589–1602.
  • Moultos OA, Tsimpanogiannis IN, Panagiotopoulos AZ, et al. Atomistic molecular dynamics simulations of CO2 diffusivity in H2O for a wide range of temperatures and pressures. J Phys Chem B. 2014;118:5532–5541.
  • Izadi S, Anandakrishnan R, Onufriev A V. Building water models: a different approach. J Phys Chem Lett. 2014;5:3863–3871.
  • Spura T, John C, Habershon S, et al. Nuclear quantum effects in liquid water from path-integral simulations using an ab initio force-matching approach. Mol Phys. 2015;113:808–822.
  • Orsi M. Comparative assessment of the ELBA coarse-grained model for water. Mol Phys. 2014;112:1566–1576.
  • Bachmann SJ, Van Gunsteren WF. On the compatibility of polarisable and non-polarisable models for liquid water. Mol Phys. 2014;112:2761–2780.
  • Medders GR, Babin V, Paesani F. Development of a “first-principles” water potential with flexible monomers. III. Liquid phase properties. J Chem Theory Comput. 2014;10:2906–2910.
  • Kiss PT, Baranyai A. Anomalous properties of water predicted by the BK3 model. J Chem Phys. 2014;140:154505.
  • Espinosa JR, Sanz E, Valeriani C, et al. Homogeneous ice nucleation evaluated for several water models. J Chem Phys. 2014;141:18C529.
  • Shvab I, Sadus RJ. Thermodynamic properties and diffusion of water + methane binary mixtures. J Chem Phys. 2014;140:104505.
  • Gallo P, Corradini D, Rovere M. Widom line and dynamical crossovers as routes to understand supercritical water. Nat Commun. 2014;5:5806.
  • Tainter CJ, Shi L, Skinner JL. Reparametrized E3B (explicit three-body) water model using the TIP4P/2005 model as a reference. J Chem Theory Comput. 2015;11:2268–2277.
  • Lobanova O, Avendaño C, Lafitte T, et al. SAFT-γ force field for the simulation of molecular fluids: 4. A single-site coarse-grained model of water applicable over a wide temperature range. Mol Phys. 2015;113:1228–1249.
  • Park DK, Yoon B-W, Lee SH. Transport properties of super-cooled water: a molecular dynamics simulation study using SPC/E model. Bull Korean Chem Soc. 2015;36:492–497.
  • Fuentes-Azcatl R, Mendoza N, Alejandre J. Improved SPC force field of water based on the dielectric constant: SPC/ε. Phys A Stat Mech its Appl. 2015;420:116–123.
  • Shvab I, Sadus RJ. Thermophysical properties of supercritical water and bond flexibility. Phys Rev E. 2015;92:012124.
  • Corradini D, Rovere M, Gallo P. The Widom line and dynamical crossover in supercritical water: popular water models versus experiments. J Chem Phys. 2015;143:114502.
  • Tran KN, Tan M, Ichiye T. A single-site multipole model for liquid water. J Chem Phys. 2016;145:034501.
  • Jiang H, Moultos OA, Economou IG, et al. Hydrogen-bonding polarizable intermolecular potential model for water. J Phys Chem B. 2016;120:12358–12370.
  • Ding W, Palaiokostas M, Orsi M. Stress testing the ELBA water model. Mol Simul. 2016;42:337–346.
  • Köster A, Spura T, Rutkai G, et al. Assessing the accuracy of improved force-matched water models derived from ab initio molecular dynamics simulations. J Comput Chem. 2016;37:1828–1838.
  • Dhabal D, Chakravarty C, Molinero V, et al. Comparison of liquid-state anomalies in stillinger-weber models of water, silicon, and germanium. J Chem Phys. 2016;145:214502.
  • Guillaud E, Merabia S, de Ligny D, et al. Decoupling of viscosity and relaxation processes in supercooled water: a molecular dynamics study with the TIP4P/2005f model. Phys Chem Chem Phys. 2017;19:2124–2130.
  • Abbaspour M, Akbarzadeh H, Salemi S, et al. Molecular dynamics simulation of liquid water and ice nanoclusters using a new effective HFD-like model. J Comput Chem. 2018;39:269–278.
  • Gabrieli A, Sant M, Izadi S, et al. High-temperature dynamic behavior in bulk liquid water: a molecular dynamics simulation study using the OPC and TIP4P-Ew potentials. Front Phys. 2018;13:138203–138215.
  • Handle PH, Sciortino F. The Adam – Gibbs relation and the TIP4P/2005 model of water. Mol Phys. 2018; In press.
  • Striolo A. The mechanism of water diffusion in narrow carbon nanotubes. Nano Lett. 2006;6:633–639.
  • Striolo A. Water self-diffusion through narrow oxygenated carbon nanotubes. Nanotechnology. 2007;18:475704.
  • Nie GX, Wang Y, Huang JP. Shape effect of nanochannels on water mobility. Front Phys. 2016;11:114702.
  • Zheng Y, Ye H, Zhang Z, et al. Water diffusion inside carbon nanotubes: mutual effects of surface and confinement. Phys Chem Chem Phys. 2012;14:964–971.
  • Chiavazzo E, Fasano M, Asinari P, et al. Scaling behaviour for the water transport in nanoconfined geometries. Nat Commun. 2014;5:3565.
  • Martí J, Gordillo MC. Microscopic dynamics of confined supercritical water. Chem Phys Lett. 2002;354:227–232.
  • Barati Farimani A, Aluru NR. Spatial diffusion of water in carbon nanotubes: from fickian to ballistic motion. J Phys Chem B. 2011;115:12145–12149.
  • Liu Y, Wang Q. Transport behavior of water confined in carbon nanotubes. Phys Rev B. 2005;72:085420.
  • Hirunsit P, Balbuena PB. Effects of confinement on water structure and dynamics: a molecular simulation study. J Phys Chem C. 2007;111:1709–1715.
  • Sanghi T, Aluru NR. A combined quasi-continuum/Langevin equation approach to study the self-diffusion dynamics of confined fluids. J Chem Phys. 2013;138:124109.
  • Mozaffari F. A molecular dynamics simulation study of the effect of water–graphene interaction on the properties of confined water. Mol Simul. 2016;42:1475–1484.
  • Muscatello J, Jaeger F, Matar OK, et al. Optimizing water transport through graphene-based membranes: insights from nonequilibrium molecular dynamics. ACS Appl Mater Interfaces. 2016;8:12330–12336.
  • Sendner C, Horinek D, Bocquet L, et al. Interfacial water at hydrophobic and hydrophilic surfaces: slip, viscosity, and diffusion. Langmuir. 2009;25:10768–10781.
  • Nguyen TX, Bhatia SK. Some anomalies in the self-diffusion of water in disordered carbons. J Phys Chem C. 2012;116:3667–3676.
  • Diallo SO, Vlcek L, Mamontov E, et al. Translational diffusion of water inside hydrophobic carbon micropores studied by neutron spectroscopy and molecular dynamics simulation. Phys Rev E. 2015;91:022124.
  • Gordillo MC, Martí J. High temperature behavior of water inside flat graphite nanochannels. Phys Rev B. 2007;75:085406.
  • Martí J, Sala J, Guàrdia E. Molecular dynamics simulations of water confined in graphene nanochannels: from ambient to supercritical environments. J Mol Liq. 2010;153:72–78.
  • Martí J, Sala J, Guàrdia E, et al. Molecular dynamics simulations of supercritical water confined within a carbon-slit pore. Phys Rev E. 2009;79:031606.
  • Tahat A, Martí J. Proton transfer in liquid water confined inside graphene slabs. Phys Rev E – Stat Nonlinear, Soft Matter Phys. 2015;92:032402.
  • Martí J, Nagy G, Guàrdia E, et al. Molecular dynamics simulation of liquid water confined inside graphite channels: dielectric and dynamical properties. J Phys Chem B. 2006;110:23987–23994.
  • Mosaddeghi H, Alavi S, Kowsari MH, et al. Simulations of structural and dynamic anisotropy in nano-confined water between parallel graphite plates. J Chem Phys. 2012;137:184703.
  • Spera MBM, Taketa TB, Beppu MM. Roughness dynamic in surface growth: layer-by-layer thin films of carboxymethyl cellulose/chitosan for biomedical applications. Biointerphases. 2017;12:04E401.
  • Wei MJ, Zhou J, Lu X, et al. Diffusion of water molecules confined in slits of rutile TiO2(110) and graphite(0001). Fluid Phase Equilib. 2011;302:316–320.
  • Choudhury N, Pettitt BM. Dynamics of water trapped between hydrophobic solutes. J Phys Chem B. 2005;109:6422–6429.
  • Kim JS, Choi JS, Lee MJ, et al. Between scylla and charybdis: hydrophobic graphene-guided water diffusion on hydrophilic substrates. Sci Rep. 2013;3:2309.
  • Spohr E, Hartnig C, Gallo P, et al. Water in porous glasses. A computer simulation study. J Mol Liq. 1999;80:165–178.
  • Leng Y, Cummings PT. Hydration structure of water confined between mica surfaces. J Chem Phys. 2006;124:1–5.
  • Porion P, Michot LJ, Faugère AM, et al. Structural and dynamical properties of the water molecules confined in dense clay sediments: a study combining 2H NMR spectroscopy and multiscale numerical modeling. J Phys Chem C. 2007;111:5441–5453.
  • Ou X, Li J, Lin Z. Dynamic behavior of interfacial water on Mg(OH)2 (001) surface: a molecular dynamics simulation work. J Phys Chem C. 2014;118:29887–29895.
  • De Li T, Gao J, Szoszkiewicz R, et al. Structured and viscous water in subnanometer gaps. Phys Rev B. 2007;75:115415.
  • Kerisit S, Liu C. Molecular simulations of water and ion diffusion in nanosized mineral fractures. Env Sci Technol. 2009;43:777–782.
  • Mutisya SM, Kirch A, De Almeida JM, et al. Molecular dynamics simulations of water confined in calcite slit pores: an NMR spin relaxation and hydrogen bond analysis. J Phys Chem C. 2017;121:6674–6684.
  • Liu P, Harder E, Berne BJ. On the calculation of diffusion coefficients in confined fluids and interfaces with an application to the liquid-vapor interface of water. J Phys Chem B. 2004;108:6595–6602.
  • Prakash M, Lemaire T, Caruel M, et al. Anisotropic diffusion of water molecules in hydroxyapatite nanopores. Phys Chem Miner. 2017;44:509–519.
  • Prakash M, Lemaire T, Di Tommaso D, et al. Transport properties of water molecules confined between hydroxyapaptite surfaces: a molecular dynamics simulation approach. Appl Surf Sci. 2017;418:296–301.
  • Pham TT, Lemaire T, Capiez-Lernout E, et al. Properties of water confined in hydroxyapatite nanopores as derived from molecular dynamics simulations. Theor Chem Acc. 2015;134:1.
  • Předota M, Cummings PT, Wesolowski DJ. Electric double layer at the rutile (110) surface. 3. Inhomogeneous viscosity and diffusivity measurement by computer simulations. J Phys Chem C. 2007;111:3071–3079.
  • Solveyra EG, de la Llave E, Molinero V, et al. Structure, dynamics, and phase behavior of water in TiO2 nanopores. J Phys Chem C. 2013;117:3330–3342.
  • Cao W, Lu L, Huang L, et al. Molecular behavior of water on titanium dioxide nanotubes: a molecular dynamics simulation study. J Chem Eng Data. 2016;61:4131–4138.
  • Zhang Q, Chan K-Y, Quirke N. Molecular dynamics simulation of water confined in a nanopore of amorphous silica. Mol Simul. 2009;35:1215–1223.
  • Renou R, Szymczyk A, Ghoufi A. Influence of the pore length on the properties of water confined in a silica nanopore. Mol Phys. 2014;112:2275–2281.
  • Dickey AN, Stevens MJ. Site-dipole field and vortices in confined water. Phys Rev E. 2012;86:051601.
  • Ishikawa S, Sakuma H, Tsuchiya N. Self–diffusion of water molecules confined between quartz surfaces at elevated temperatures by molecular dynamics simulations. J Mineral Petrol Sci. 2016;111:297–302.
  • Patsahan T, Holovko M. Computer simulation study of the diffusion of water molecules confined in silica gel. Condens Matter Phys. 2004;7:3–13.
  • Siboulet B, Molina J, Coasne B, et al. Water self-diffusion at the surface of silica glasses: effect of hydrophilic to hydrophobic transition. Mol Phys. 2013;111:3410–3417.
  • Karzar Jeddi M, Romero-Vargas Castrillón S. Dynamics of water monolayers confined by chemically heterogeneous surfaces: observation of surface-induced anisotropic diffusion. J Phys Chem B. 2017;121:9666–9675.
  • Lerbret A, Lelong G, Mason PE, et al. Water confined in cylindrical pores: a molecular dynamics study. Food Biophys. 2011;6:233–240.
  • Qomi MJA, Bauchy M, Ulm FJ, et al. Anomalous composition-dependent dynamics of nanoconfined water in the interlayer of disordered calcium-silicates. J Chem Phys. 2014;140:054515.
  • Hou D, Lu C, Zhao T, et al. Structural, dynamic and mechanical evolution of water confined in the nanopores of disordered calcium silicate sheets. Microfluid Nanofluidics. 2015;19:1309–1323.
  • Hou D, Li Z, Zhao T, et al. Water transport in the nano-pore of the calcium silicate phase: reactivity, structure and dynamics. Phys Chem Chem Phys. 2015;17:1411–1423.
  • Hou D, Li D, Zhao T, et al. Confined water dissociation in disordered silicate nanometer-channels at elevated temperatures: mechanism, dynamics and impact on substrates. Langmuir. 2016;32:4153–4168.
  • Li D, Zhao W, Hou D, et al. Molecular dynamics study on the chemical bound, physical adsorbed and ultra-confined water molecules in the nano-pore of calcium silicate hydrate. Constr Build Mater. 2017;151:563–574.
  • Boek ES. Molecular dynamics simulations of interlayer structure and mobility in hydrated Li-, Na- and K-montmorillonite clays. Mol Phys. 2014;112:1472–1483.
  • Boţan A, Rotenberg B, Marry V, et al. Hydrodynamics in clay nanopores. J Phys Chem C. 2011;115:16109–16115.
  • Rao Q, Xiang Y, Leng Y. Molecular simulations on the structure and dynamics of water-methane fluids between Na-montmorillonite clay surfaces at elevated temperature and pressure. J Phys Chem C. 2013;117:14061–14069.
  • Zhou J, Lu X, Boek ES. Confined water in tunnel nanopores of sepiolite: insights from molecular simulations. Am Mineral. 2016;101:713–718.
  • Smirnov KS, Bougeard D. A molecular dynamics study of structure and short-time dynamics of water in kaolinite. J Phys Chem B. 1999;103:5266–5273.
  • Michot LJ, Ferrage E, Jiménez-Ruiz M, et al. Anisotropic features of water and ion dynamics in synthetic Na- and Ca-smectites with tetrahedral layer charge. A combined quasi-elastic neutron-scattering and molecular dynamics simulations study. J Phys Chem C. 2012;116:16619–16633.
  • Stanley HE, Kumar P, Franzese G, et al. Liquid polyamorphism: some unsolved puzzles of water in bulk, nanoconfined, and biological environments. AIP Conf Proc. 2008;982:251–271.
  • Sega M, Vallauri R, Melchionna S. Diffusion of water in confined geometry: the case of a multilamellar bilayer. Phys Rev E. 2005;72:041201.
  • McDonnell MT, Greeley DA, Kit KM, et al. Molecular dynamics simulations of hydration effects on solvation, diffusivity, and permeability in Chitosan/Chitin films. J Phys Chem B. 2016;120:8997–9010.
  • Hua L, Huang X, Zhou R, et al. Dynamics of water confined in the interdomain region of a multidomain protein. J Phys Chem B. 2006;110:3704–3711.
  • Berrod Q, Hanot S, Guillermo A, et al. Water sub-diffusion in membranes for fuel cells. Sci Rep. 2017;7:8326.
  • Gavazzoni C, Giovambattista N, Netz PA, et al. Structure and mobility of water confined in AlPO 4 -54 nanotubes. J Chem Phys. 2017;146:234509.
  • Ding M, Szymczyk A, Goujon F, et al. Structure and dynamics of water confined in a polyamide reverse-osmosis membrane: a molecular-simulation study. J Membrane Sci. 2014;458:236–244.
  • Won CY, Aluru NR. Structure and dynamics of water confined in a boron nitride nanotube. J Phys Chem B. 2008;112:1812–1818.
  • Di Napoli S, Gamba Z. Structural and dynamical properties of water confined between two hydrophilic surfaces. Phys B. 2009;404:2883–2886.
  • Beckstein O, Sansom MSP. Liquid-vapor oscillations of water in hydrophobic nanopores. Proc Natl Acad Sci USA. 2003;100:7063–7068.
  • Brovchenko I, Geiger A, Oleinikova A, et al. Phase coexistence and dynamic properties of water in nanopores. Eur Phys J E. 2003;12:69–76.
  • Cui ST. Molecular self-diffusion in nanoscale cylindrical pores and classical Fick’s law predictions. J Chem Phys. 2005;123:4–7.
  • Yamashita K, Daiguji H. Coarse-grained molecular dynamics simulations of capillary evaporation of water confined in hydrophilic mesopores. Mol Phys. 2016;114:884–894.
  • Köhler MH, Bordin JR, da Silva LB, et al. Breakdown of the Stokes–Einstein water transport through narrow hydrophobic nanotubes. Phys Chem Chem Phys. 2017;19:12921–12927.
  • Kumar P, Buldyrev SV, Starr FW, et al. Thermodynamics, structure, and dynamics of water confined between hydrophobic plates. Phys Rev E – Stat Nonlinear, Soft Matter Phys. 2005;72:1–12.
  • Kumar P, Han S, Stanley HE. Anomalies of water and hydrogen bond dynamics in hydrophobic nanoconfinement. J Phys Condens Matter. 2009;21:504108.
  • Bai J, Zeng XC. Polymorphism and polyamorphism in bilayer water confined to slit nanopore under high pressure. Proc Natl Acad Sci USA. 2012;109:21240–21245.
  • Choudhury N. Effect of surface hydrophobicity on the dynamics of water at the nanoscale confinement: a molecular dynamics simulation study. Chem Phys. 2013;421:68–76.
  • Bauer BA, Ou S, Patel S, et al. Dynamics and energetics of hydrophobically confined water. Phys Rev E. 2012;85:051506.
  • Han S, Choi MY, Kumar P, et al. Phase transitions in confined water nanofilms. Nat Phys. 2010;6:685–689.
  • Marañón Di Leo J, Marañón J. Confined water in nanotube. J Mol Struct THEOCHEM. 2003;623:159–166.
  • Han KN, Bernardi S, Wang L, et al. Water structure and transport in zeolites with pores in one or three dimensions from molecular dynamics simulations. J Phys Chem C. 2017;121:381–391.
  • Shirono K, Daiguji H. Dipole moments of water molecules confined in Na-LSX zeolites – molecular dynamics simulations including polarization of water. Chem Phys Lett. 2006;417:251–255.
  • Ju SP, Chang JG, Sen LJ, et al. The effects of confinement on the behavior of water molecules between parallel Au plates of (001) planes. J Chem Phys. 2005;122:1–5.
  • Lane JMD, Chandross M, Stevens MJ, et al. Water in nanoconfinement between hydrophilic self-assembled monolayers. Langmuir. 2008;24:5209–5212.
  • Franco LFM, Castier M, Economou IG. Diffusion in homogeneous and in inhomogeneous media: a new unified approach. J Chem Theory Comput. 2016;12:5247–5255.
  • Franco LFM, Castier M, Economou IG. Anisotropic parallel self-diffusion coefficients near the calcite surface: a molecular dynamics study. J Chem Phys. 2016;145:084702.
  • Mittal J, Truskett TM, Errington JR, et al. Layering and position-dependent diffusive dynamics of confined fluids. Phys Rev Lett. 2008;100:145901.
  • Von Hansen Y, Gekle S, Netz RR. Anomalous anisotropic diffusion dynamics of hydration water at lipid membranes. Phys Rev Lett. 2013;111:118103.
  • Carmer J, Van Swol F, Truskett TM. Note: position-dependent and pair diffusivity profiles from steady-state solutions of color reaction-counterdiffusion problems. J Chem Phys. 2014;141:046101.
  • Simonnin P, Noetinger B, Nieto-Draghi C, et al. Diffusion under confinement: hydrodynamic finite-size effects in simulation. J Chem Theory Comput. 2017;13:2881–2889.
  • Mills R. Self-diffusion in normal and heavy water in the range 1–45°. J Phys Chem. 1973;77:685–688.
  • Jonas J, DeFries T, Wilbur DJ. Molecular motions in compressed liquid water. J Chem Phys. 1976;65:582–588.
  • Krynicki K, Green CD, Sawyer DW. Pressure and temperature dependence of self-diffusion in water. Faraday Discuss Chem Soc. 1978;66:199–208.
  • Lamb WJ, Hoffman GA, Jonas J. Self-diffusion in compressed supercritical water. J Chem Phys. 1981;74:6875–6880.
  • Prielmeier FX, Lang EW, Speedy RJ, et al. Diffusion in supercooled water to 300MPa. Phys Rev Lett. 1987;59:1128–1131.
  • Prielmeier FX, Lang EW, Speedy RJ, et al. The pressure dependence of self-diffusion in supercooled light and heavy water. Ber Bunsen-Ges Phys Chem. 1988;92:1111–1117.
  • Cunsolo A, Orecchini A, Petrillo C, et al. Quasielastic neutron scattering investigation of the pressure dependence of molecular motions in liquid water. J Chem Phys. 2006;124:084503.
  • Yoshida K, Matubayasi N, Nakahara M. Self-diffusion coefficients for water and organic solvents at high temperatures along the coexistence curve. J Chem Phys. 2008;129:214501.
  • Klotz S, Strassle T, Bove LE. Quasi-elastic neutron scattering in the multi-GPa range and its application to liquid water. Appl Phys Lett. 2013;103:193504.
  • Bove LE, Klotz S, Strässle T, et al. Translational and rotational diffusion in water in the gigapascal range. Phys Rev Lett. 2013;111:185901.
  • Suárez-Iglesias O, Medina I, de los Ángeles Sanz M, et al. Self-diffusion in molecular fluids and noble gases: available data. J Chem Eng Data. 2015;60:2757–2817.
  • Engkvist O, Åstrand PO, Karlström G. Accurate intermolecular potentials obtained from molecular wave functions: bridging the gap between quantum chemistry and molecular simulations. Chem Rev. 2000;100:4087–4108.
  • Laasonen K, Sprik M, Parrinello M, et al. “Ab initio” liquid water. J Chem Phys. 1993;99:9080–9089.
  • Sprik M, Hutter J, Parrinello M. Ab initio molecular dynamics simulation of liquid water: comparison of three gradient-corrected density functionals. J Chem Phys. 1996;105:1142–1152.
  • Silvestrelli PL, Parrinello M. Structural, electronic, and bonding properties of liquid water from first principles. J Chem Phys. 1999;111:3572–3580.
  • Izvekov S, Voth GA. Car-Parrinello molecular dynamics simulation of liquid water: new results. J Chem Phys. 2002;116:10372–10376.
  • Izvekov S, Parrinello M, Burnham CJ, et al. Effective force fields for condensed phase systems from ab initio molecular dynamics simulation: a new method for force-matching. J Chem Phys. 2004;120:10896–10913.
  • Allesch M, Schwegler E, Gygi F, et al. A first principles simulation of rigid water. J Chem Phys. 2004;120:5192–5198.
  • Krallafa A, Adda A, Seddiki A, et al. Molecular dynamics simulation of water in the low temperature region. AIP Conf Proc. 2012;1456:215–222.
  • Jonchiere R, Seitsonen AP, Ferlat G, et al. Van der Waals effects in ab initio water at ambient and supercritical conditions. J Chem Phys. 2011;135:154503.
  • Xantheas SS. Interaction potentials for water from accurate cluster calculations. Struct Bond. 2005;116:119–148.
  • Jorgensen WL, Tirado-Rives J. Potential energy functions for atomic-level simulations of water and organic and biomolecular systems. Proc Natl Acad Sci USA. 2005;102:6665–6670.
  • Asthagiri D, Pratt LR, Kress JD. Free energy of liquid water on the basis of quasichemical theory and ab initio molecular dynamics. Phys Rev E. 2003;68:041505.
  • Grossman JC, Schwegler E, Draeger EW, et al. Towards an assessment of the accuracy of density functional theory for first principles simulations of water. J Chem Phys. 2004;120:300–311.
  • Schwegler E, Grossman JC, Gygi F, et al. Towards an assessment of the accuracy of density functional theory for first principles simulations of water. II. J Chem Phys. 2004;121:5400–5409.
  • Femández-Serra MV, Artacho E. Network equilibration and first-principles liquid water. J Chem Phys. 2004;121:11136–11144.
  • Kuo IFW, Mundy CJ, McGrath MJ, et al. Liquid water from first principles: investigation of different sampling approaches. J Phys Chem B. 2004;108:12990–12998.
  • VandeVondele J, Mohamed F, Krack M, et al. The influence of temperature and density functional models in ab initio molecular dynamics simulation of liquid water. J Chem Phys. 2005;122:014515.
  • Sit PH-L, Marzari N. Static and dynamical properties of heavy water at ambient conditions from first-principles molecular dynamics. J Chem Phys. 2005;122:204510.
  • Fernández-Serra MV, Ferlat G, Artacho E. Two exchange-correlation functionals compared for first-principles liquid water. Mol Simul. 2005;31:361–366.
  • Todorova T, Seitsonen AP, Hutter J, et al. Molecular dynamics simulation of liquid water: hybrid density functionals. J Phys Chem B. 2006;110:3685–3691.
  • Lee H-S, Tuckerman ME. Structure of liquid water at ambient temperature from ab initio molecular dynamics performed in the complete basis set limit. J Chem Phys. 2006;125:154507.
  • Lee H-S, Tuckerman ME. Dynamical properties of liquid water from ab initio molecular dynamics performed in the complete basis set limit. J Chem Phys. 2007;126:164501.
  • Guidon M, Schiffmann F, Hutter J, et al. Ab initio molecular dynamics using hybrid density functionals. J Chem Phys. 2008;128:214104.
  • Yoo S, Zeng XC, Xantheas SS. On the phase diagram of water with density functional theory potentials: the melting temperature of ice Ih with the Perdew–Burke–Ernzerhof and Becke–Lee–Yang–Parr functionals. J Chem Phys. 2009;130:221102.
  • Kuhne TD, Krack M, Parrinello M. Static and dynamical properties of liquid water from first principles by a novel car-parrinello-like approach. J Chem Theory Comput. 2009;5:235–241.
  • Ma Z, Zhang Y, Tuckerman ME. Ab initio molecular dynamics study of water at constant pressure using converged basis sets and empirical dispersion corrections. J Chem Phys. 2012;137:044506.
  • Lin IC, Seitsonen AP, Tavernelli I, et al. Structure and dynamics of liquid water from ab initio molecular dynamics—comparison of BLYP, PBE, and revPBE density functionals with and without van der waals corrections. J Chem Theory Comput. 2012;8:3902–3910.
  • Distasio RA, Santra B, Li Z, et al. The individual and collective effects of exact exchange and dispersion interactions on the ab initio structure of liquid water. J Chem Phys. 2014;141:084502.
  • Bankura A, Karmakar A, Carnevale V, et al. Structure, dynamics, and spectral diffusion of water from first-principles molecular dynamics. J Phys Chem C. 2014;118:29401–29411.
  • Del Ben M, Hutter J, VandeVondele J. Probing the structural and dynamical properties of liquid water with models including non-local electron correlation. J Chem Phys. 2015;143:054506.
  • Ambrosio F, Miceli G, Pasquarello A. Structural, dynamical, and electronic properties of liquid water: a hybrid functional study. J Phys Chem B. 2016;120:7456–7470.
  • Galib M, Duignan TT, Misteli Y, et al. Mass density fluctuations in quantum and classical descriptions of liquid water. J Chem Phys. 2017;146:244501.
  • Chen M, Ko H, Remsing RC, et al. Ab initio theory and modeling of water. Proc Natl Acad Sci USA. 2017;114:10846–10851.
  • Karmakar A, Chandra A. Water under supercritical conditions: hydrogen bonds, polarity, and vibrational frequency fluctuations from Ab initio simulations with a dispersion corrected density functional. ACS Omega. 2018;3:3453–3462.
  • Dawson W, Gygi F. Equilibration and analysis of first-principles molecular dynamics simulations of water. J Chem Phys. 2018;148:124501.
  • Zheng L, Chen M, Sun Z, et al. Structural, electronic, and dynamical properties of liquid water by ab initio molecular dynamics based on SCAN functional within the canonical ensemble. J Chem Phys. 2018;148:164505.
  • Karmakar A, Chandra A. Dynamics of vibrational spectral diffusion in water: effects of dispersion interactions, temperature, density, system size and fictitious orbital mass. J Mol Liq. 2018;249:169–178.
  • Manzano H, Zhang W, Raju M, et al. Benchmark of ReaxFF force field for subcritical and supercritical water. J Chem Phys. 2018;148:234503.
  • van Duin ACT, Dasgupta S, Lorant F, et al. ReaxFF: a reactive force field for hydrocarbons. J Phys Chem A. 2001;105:9396–9409.
  • Fogarty JC, Aktulga HM, Grama AY, et al. A reactive molecular dynamics simulation of the silica-water interface. J Chem Phys. 2010;132:174704.
  • Pascal TA, Scharf D, Jung Y, et al. On the absolute thermodynamics of water from computer simulations: A comparison of first-principles molecular dynamics, reactive and empirical force fields. J Chem Phys. 2012;137:244507.
  • Rimsza JM, Yeon J, van Duin ACT, et al. Water interactions with nanoporous silica: comparison of ReaxFF and ab initio based molecular dynamics simulations. J Phys Chem C. 2016;120:24803–24816.
  • Zhang W, van Duin ACT. Second-generation ReaxFF water force field: improvements in the description of water density and OH-anion diffusion. J Phys Chem B. 2017;121:6021–6032.
  • Teleman O, Wallqvist A. Ewald sumation retards translational motion in molecular dynamic simulations of water. Int J Quantum Chem. 1990;38:245–249.
  • Teleman O. An efficient way to conserve the total energy in molecular dynamics simulations; boundary effects on energy conservation and dynamic properties. Mol Sim. 1988;1:345–355.
  • Dünweg B, Kremer K. Molecular dynamics simulation of a polymer chain in solution. J Chem Phys. 1993;99:6983–6997.
  • Moultos OA, Zhang Y, Tsimpanogiannis IN, et al. System-size corrections for self-diffusion coefficients calculated from molecular dynamics simulations: the case of CO2, n -alkanes, and poly(ethylene glycol) dimethyl ethers. J Chem Phys. 2016;145:074109.
  • Jamali SH, Wolff L, Becker TM, et al. Finite-size effects of binary mutual diffusion coefficients from molecular dynamics. J Chem Theory Comput. 2018;14:2667–2677.
  • Berendsen HJC, Postma JPM, van Gunsteren WF, et al. Interaction models for water in relation to protein hydration. In: Pullman B, editor. Intermolecular forces. Dordrecht: D. Reidel Publishing Company; 1981. p. 331–342.
  • Pranami G, Lamm MH. Estimating error in diffusion coefficients derived from molecular dynamics simulations. J Chem Theory Comput. 2015;11:4586–4592.
  • Wang B, Kuo J, Bae SC, et al. When Brownian diffusion is not Gaussian. Nat Mater. 2012;11:481–485.
  • Casalegno M, Raos G, Appetecchi GB, et al. From nanoscale to microscale: crossover in the diffusion dynamics within two pyrrolidinium-based ionic liquids. J Phys Chem Lett. 2017;8:5196–5202.
  • Lamoureux G, MacKerell AD, Roux B. A simple polarizable model of water based on classical Drude oscillators. J Chem Phys. 2003;119:5185–5197.
  • Habershon S, Markland TE, Manolopoulos DE. Competing quantum effects in the dynamics of a flexible water model. J Chem Phys. 2009;131:024501.
  • Ben-Naim A, Stillinger FH. Aspects of the statistical-mechanical theory of water. In: RA Horne, editor. Structure and transport processes in water and aqueous solutions. New York: Wiley-Interscience; 1972. p. 295–330.
  • Stillinger FH, Rahman A. Molecular dynamics study of temperature effects on water structure and kinetics. J Chem Phys. 1972;57:1281–1292.
  • Matsuoka O, Clementi E, Yoshimine M. CI study of the water dimer potential surface. J Chem Phys. 1976;64:1351–1361.
  • Jorgensen WL. Quantum and statistical mechanical studies of liquids. 10. transferable intermolecular potential functions for water, alcohols, and ethers. application to liquid water. J Am Chem Soc. 1981;103:335–340.
  • Dang LX, Pettitt BM. Simple intramolecular model potentials for water. J Phys Chem. 1987;91:3349–3354.
  • Mahoney MW, Jorgensen WL. A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions. J Chem Phys. 2000;112:8910–8922.
  • Guillot B. A reappraisal of what we have learnt during three decades of computer simulations on water. J Mol Liq. 2002;101:219–260.
  • Pieniazek PA, Tainter CJ, Skinner JL. Interpretation of the water surface vibrational sum-frequency spectrum. J Chem Phys. 2011;135:044701.
  • Jorgensen WL, Madura JD. Temperature and size dependence for monte carlo simulations of TIP4P water. Mol Phys. 1985;56:1381–1392.
  • Rick SW. A reoptimization of the five-site water potential (TIP5P) for use with Ewald sums. J Chem Phys. 2004;120:6085–6093.
  • Lopes PEM, Roux B, MacKerell AD. Molecular modeling and dynamics studies with explicit inclusion of electronic polarizability: theory and applications. Theor Chem Acc. 2009;124:11–28.
  • Schwörer M, Breitenfeld B, Tröster P, et al. Coupling density functional theory to polarizable force fields for efficient and accurate Hamiltonian molecular dynamics simulations. J Chem Phys. 2013;138:244103.
  • Qi R, Wang LP, Wang Q, et al. United polarizable multipole water model for molecular mechanics simulation. J Chem Phys. 2015;143:014504.
  • Yu H, Van Gunsteren WF. Charge-on-spring polarizable water models revisited: from water clusters to liquid water to ice. J Chem Phys. 2004;121:9549–9564.
  • Paricaud P, Předota M, Chialvo AA, et al. From dimer to condensed phases at extreme conditions: accurate predictions of the properties of water by a Gaussian charge polarizable model. J Chem Phys. 2005;122:244511.
  • Orozco GA, Moultos OA, Jiang H, et al. Molecular simulation of thermodynamic and transport properties for the H2O + NaCl system. J Chem Phys. 2014;141:234507.
  • Jiang H, Mester Z, Moultos OA, et al. Thermodynamic and transport properties of H2O + NaCl from polarizable force fields. J Chem Theory Comput. 2015;11:3802–3810.
  • Jiang W, Hardy D, Phillips J, et al. High-performance scalable molecular dynamics simulations of a polarizable force field based on classical Drude oscillators in NAMD. J Phys Chem Lett. 2011;2:87–92.
  • Phillips JC, Braun R, Wang W, et al. Scalable molecular dynamics with NAMD. J Comput Chem. 2005;26:1781–1802.
  • Tironi IG, Brunne RM, Van Gunsteren WF. On the relative merits of flexible versus rigid models for use in computer simulations of molecular liquids. Chem Phys Lett. 1996;250:19–24.
  • Lemberg HL, Stillinger FH. Central-force model for liquid water. J Chem Phys. 1975;62:1677–1690.
  • Bopp P, Jansco G, Heinzinger K. An improved potential for non-rigid water molecules in the liquid phase. Chem Phys Lett. 1983;98:129–133.
  • Reimers JR, Watts RO, Klein ML. Intermolecular potential functions and the properties of water. Chem Phys. 1982;64:95–114.
  • Martí J, Guàrdia E, Padró JA. Dielectric properties and infrared spectra of liquid water: influence of the dynamic cross correlations. J Chem Phys. 1994;101:10883–10891.
  • Martí J, Padro JA, Guàrdia E. Molecular dynamics simulation of liquid water along the coexistence curve: hydrogen bonds and vibrational spectra. J Chem Phys. 1996;105:639–649.
  • Toukan K, Rahman A. Molecular-dynamics study of atomic motions in water. Phys Rev B. 1985;31:2643–2648.
  • Hess B, Saint-Martin H, Berendsen HJC. Flexible constraints: an adiabatic treatment of quantum degrees of freedom, with application to the flexible and polarizable mobile charge densities in harmonic oscillators model for water. J Chem Phys. 2002;116:9602–9610.
  • Saint-Martin H, Hernández-Cobos J, Bernal-Uruchurtu MI, et al. A mobile charge densities in harmonic oscillators (MCDHO) molecular model for numerical simulations: the water–water interaction. J Chem Phys. 2000;113:10899–10912.
  • Niesar U, Corongiu G, Clementi E, et al. Molecular dynamics simulations of liquid water using the NCC ab initio potential. J Phys Chem. 1990;94:7949–7956.
  • Babin V, Leforestier C, Paesani F. Development of a “first principles” water potential with flexible monomers: dimer potential energy surface, VRT spectrum, and second virial coefficient. J Chem Theory Comput. 2013;9:5395–5403.
  • Babin V, Medders GR, Paesani F. Development of a “first principles” water potential with flexible monomers. II: trimer potential energy surface, third virial coefficient, and small clusters. J Chem Theory Comput. 2014;10:1599–1607.
  • Speedy RJ, Angell CA. Isothermal compressibility of supercooled water and evidence for a thermodynamic singularity at -45°C. J Chem Phys. 1976;65:851–858.
  • Price WS, Ide H, Arata Y. Self-diffusion of supercooled water to 238K using PGSE NMR diffusion measurements. J Phys Chem A. 1999;103:448–450.
  • Holz M, Heil SR, Sacco A. Temperature-dependent self-diffusion coefficients of water and six selected molecular liquids for calibration in accurate 1H NMR PFG measurements. Phys Chem Chem Phys. 2000;2:4740–4742.
  • Huang Y-L, Merker T, Heilig M, et al. Molecular modeling and simulation of vapor-liquid equilibria of ethylene oxide, ethylen glycol, and water as well as their binary mixtures. Ind Eng Chem Res. 2012;51:7428–7440.
  • Mishima O, Stanley HE. The relationship between liquid, supercooled and glassy water. Nature. 1998;396:329–335.
  • Xu L, Mallamace F, Yan Z, et al. Appearance of a fractional Stokes–Einstein relation in water and a structural interpretation of its onset. Nat Phys. 2009;5:565–569.
  • Angell CA, Ito K, Moynihan CT. Thermodynamic determination of fragility in liquids and a fragile-to-strong liquid transition in water. Nature. 1999;398:492–495.
  • Mallamace F, Corsaro C, Stanley HE. A singular thermodynamically consistent temperature at the origin of the anomalous behavior of liquid water. Sci Rep. 2012;2:993.
  • Scala A, Starr FW, La Nave E, et al. Configurational entropy and diffusivity of supercooled water. Nature. 2000;406:166–169.
  • Rosenfeld Y. A quasi-universal scaling law for atomic transport in simple fluids. J Phys: Condens Matter. 1999;11:5415–5427.
  • Errington JR, Truskett TM, Mittal J. Excess-entropy-based anomalies for a waterlike fluid. J Chem Phys. 2006;125:244502.
  • Agarwal M, Singh M, Sharma R, et al. Relationship between structure, entropy, and diffusivity in water and water-like liquids. J Phys Chem B. 2010;114:6995–7001.
  • Chopra R, Truskett TM, Errington JR. On the use of excess entropy scaling to describe the dynamic properties of water. J Phys Chem B. 2010;114:10558–10566.
  • Yan Z, Buldyrev SV, Stanley HE. Relation of water anomalies to the excess entropy. Phys Rev E. 2008;78:051201.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.