1,072
Views
19
CrossRef citations to date
0
Altmetric
Articles

Calculation of the surface tension of water: 40 years of molecular simulations

&
Pages 295-303 | Received 09 Apr 2018, Accepted 11 Aug 2018, Published online: 26 Aug 2018

References

  • Eisenthal K. Liquid interfaces. Acc Chem Res. 1993;26:636–643.
  • Rowlinson JS, Widom B. Molecular theory of capillarity. Oxford: Clarendon Press; 1982.
  • Somayajulu GR. A generalized equation for surface tension from the triple point to the critical point. Int J Thermophys. 1988;9(4):559–566.
  • Gittens GJ. Variation of surface tension of water with temperature. J Colloid Interface Sci. 1968;30(3):406–412.
  • Jasper JJ. The surface tension of pure liquid compounds. J Phys Chem Ref Data. 1972;1(4):841–1009.
  • Vasquez G, Alvarez E, Navaza JM. Surface tension of alcohol + water from 20 to 50∘C. J Chem Eng Data. 1995;40:611–614.
  • Ghoufi A, Malfreyt P. Local pressure components and surface tension of spherical interfaces thermodynamic versus mechanical definitions. I. A mesoscale modeling of droplets. J Chem Phys. 2011;135:104105.
  • Lau GV, Ford IJ, Hunt PA, et al. Surface thermodynamics of planar, cylindrical, and spherical vapour–liquid interfaces of water. J Chem Phys. 2015;142:114701.
  • Liu KS. Phase separation of Lennard–Jones systems: a film in equilibrium with vapor. J Chem Phys. 1974;60:4226–4230.
  • Lee CY, Scott HL. The surface tension of water: a Monte Carlo calculation using an umbrella sampling algorithm. J Chem Phys. 1980;73(9):4591–4596.
  • Rahman A, Stillinger FH. Molecular dynamics study of liquid water. J Chem Phys. 1971;55:3336–3359.
  • Orea P, Lopez-Lemus J, Alejandre J. Oscillatory surface tension due to finite-size effects. J Chem Phys. 2005;123:114702.
  • Gonzalez-Melchor M, Orea P, Lopez-Lemus J, et al. Stress anisotropy induced by periodic boundary conditions. J Chem Phys. 2005;122:094503.
  • Errington JR, Kofke DA. Calculation of surface tension via area sampling. J Chem Phys. 2007;127:174709.
  • Biscay F, Ghoufi A, Goujon F, et al. Calculation of the surface tension from Monte Carlo simulations: does the model impact on the finite-size effects?. J Chem Phys. 2009;130:184710.
  • Trokhymchuk A, Alejandre J. Computer simulations of liquid/vapor interface in Lennard–Jones fluids: some questions and answers. J Chem Phys. 1999;111:8510–8523.
  • Lopez-Lemus J, Alejandre J. Thermodynamic and transport properties of simple fluids using lattice sums: Bulk phases and liquid–vapour interface. Mol Phys. 2002;100:2983–2992.
  • Goujon F, Malfreyt P, Boutin A, et al. Direct Monte Carlo simulations of the equilibrium properties of n-pentane liquid–vapor interface. J Chem Phys. 2002;116:8106–8117.
  • Grosfils P, Lutsko JF. Dependence of the liquid–vapor surface tension on the range of interaction: a test of the law of corresponding states. J Chem Phys. 2009;130:054703.
  • Goujon F, Malfreyt P, Tildesley DJ. Dissipative particle dynamics simulations in the grand canonical ensemble: applications to polymer brushes. ChemPhysChem. 2004;5:457–464.
  • Ibergay C, Ghoufi A, Goujon F, et al. Molecular simulations of the n-alkane liquid–vapor interface: interfacial properties and their long range corrections. Phys Rev E. 2007;75:051602.
  • Gloor GJ, Jackson G, Blas FJ, et al. Test-area simulation method for the direct determination of the interfacial tension of systems with continuous or discontinuous potentials. J Chem Phys. 2005;123:134703–134721.
  • Ghoufi A, Goujon F, Lachet V, et al. Expressions for local contributions to the surface tension from the virial route. Phys Rev E. 2008;77:031601.
  • Guo M, Lu B. Long range corrections to thermodynamic properties of inhomogeneous systems with planar interfaces. J Chem Phys. 1997;106:3688–3695.
  • Janecek J. Long range corrections in inhomogeneous simulations. J Chem Phys. 2006;131:6264–6269.
  • Shen VK, Mountain RD, Errington JR. Comparative study of the effect of tail corrections on surface tension determined by molecular simulation. J Phys Chem B. 2007;111:6198–6207.
  • Míguez JM, Piñeiro MM, Blas FJ. Influence of the long-range corrections on the interfacial properties of molecular models using Monte Carlo simulation. J Chem Phys. 2013;138:34707–34716.
  • Ghoufi A, Malfreyt P, Tildesley DJ. Computer modelling of the surface tension of the gas–liquid and liquid–liquid interface. Chem Soc Rev. 2016;45:1387–1409.
  • Guilllot B. A reappraisal of what we have learnt during three decades of computer simulations on water. J Mol Liq. 2002;101:219–260.
  • Cisneros GA, Wikfeldt KT, Ojamae L, et al. Modeling molecular interactions in water: from pairwise to many-body potential energy functions. Chem Rev. 2016;116:7501–7528.
  • Jorgensen WL, Chandrasekhar J, Madura JD, et al. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79:926–935.
  • Berendsen HJC, Postma JPM, van Gunsteren WF, et al. Interaction models for water in relation to protein hydration. Reidel ed. The Netherlands: B. Pullman. 1981.
  • Berendsen HJC, Grigera JR, Straatsma TP. The missing term in effective pair potentials. J Phys Chem. 1987;91:6269–6271.
  • Abascal JLF, Vega C. A general purpose model for the condensed phases of water: TIP4P/2005. J Chem Phys. 2005;123:234505.
  • Horn HW, Swope WC, Pitera JW, et al. Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. J Chem Phys. 2004;120:9565–9578.
  • Vega C, de Miguel E. Surface tension of the most popular models of water by using the test-area simulation method. J Chem Phys. 2007;126:154707.
  • Laury ML, Wang LP, Pande VS, et al. Revised parameters for the amoeba polarizable atomic multipole water model. J Phys Chem B. 2015;119:9423–9437.
  • Nagata Y, Hasegawa T, Backus EHG, et al. The surface roughness, but not the water molecular orientation varies with temperature at the water–air interface. Phys Chem Chem Phys. 2015;17:23559–23564.
  • Caldwell JW, Kollman PA. Structure and properties of neat liquids using nonadditive molecular dynamics: water, methanol, and n-methylacetamide. J Phys Chem. 1995;99:6208–6219.
  • Lamoureux G, MacKerell AD, Roux B. A simple polarizable model of water based on classical drude oscillators. J Chem Phys. 2003;119:5185–5197.
  • Rivera JL, Starr FW, Paricaud P, et al. Polarizable contributions to the surface tension of liquid water. J Chem Phys. 2006;125:094712.
  • Neyt JC, Wender A, Lachet V, et al. Prediction of the concentration dependence of the surface tension and density of salt solutions: atomistic simulations using drude oscillator polarizable and nonpolarizable models. Phys Chem Chem Phys. 2013;15:11679–11690.
  • Nagata Y, Ohto T, Bonn M, et al. Surface tension of ab initio liquid water at the water-air interface. J Chem Phys. 2016;144:204705.
  • Reddy SK, Straight SC, Bajaj P, et al. On the accuracy of the mb-pol many-body potential for water: interaction energies, vibrational frequencies, and classical thermodynamic and dynamical properties from clusters to liquid water and ice. J Chem Phys. 2016;145:194504.
  • Marrink SJ, de Vries AH, Mark AE. Coarse grained model for semiquantitative lipid simulations. J Phys Chem B. 2004;108:750–760.
  • Wang H, Junghans C, Kremer K. Comparative atomistic and coarse-grained study of water: what do we lose by coarse-graining?. Eur Phys J E. 2009;28:221–229.
  • Darré L, Machado MR, Pantano S. Coarse-grained models of water. WIREs Comput Mol Sci. 2012;2:921–930.
  • Ghoufi A, Malfreyt P. Mesoscale modeling of the water liquid–vapor interface: a surface tension calculation. Phys Rev E. 2011;83:051601.
  • Hadley KR, McCabe C. Coarse-grained molecular models of water: a review. Mol Simul. 2012;38:671–681.
  • Yesylevskyy SO, Schäfer LV, Sengupta D, et al. Polarizable water model for the coarse-grained martini force field. PLoS Comp Biol. 2010;6:1–17.
  • Viererblova L, Kolafa J. A classical polarizable model for simulations of water and ice. Phys Chem Chem Phys. 2011;13:19925–19935.
  • Neyt JC, Wender A, Lachet V, et al. Quantitative predictions of the interfacial tensions of liquid–liquid interfaces through atomistic and coarse grained models. J Chem Theory Comput. 2014;10:1887–1899.
  • Ndao M, Devemy J, Ghoufi A, et al. Coarse-graining the liquid–liquid interfaces with the martini force field : how is the interfacial tension reproduced?. J Chem Theory Comput. 2015;11:3818–3828.
  • Paredes X, Fernandez J, Padua AAH, et al. Bulk and liquid–vapor interface of pyrrolidinium-based ionic liquids: a molecular simulation study. J Phys Chem B. 2014;118:731–742.
  • Kirkwood JG, Buff FP. The statistical mechanical theory of surface tension. J Chem Phys. 1949;17:338–343.
  • Wilson MA, Pohorille A, Pratt LR. Molecular dynamics of the water liquid–vapor interface. J Chem Phys. 1987;91:4873–4878.
  • Carravetta V, Clementi E. Water–water interaction potential: an approximation of the electron correlation contribution by a functional of the SCF density matrix. J Chem Phys. 1984;81:2646–2651.
  • Matsumoto M, Kataoka Y. Study on liquid–vapor interface of water. i. Simulational results of thermodynamic properties and orientational structure. J Chem Phys. 1988;88:3233.
  • Matsuoka O, Clementi E, Yoshimine M. CI study of the water dimer potential surface. J Chem Phys. 1976;64:1351–1361.
  • Lie GC, Grigoras S, Dang LX, et al. Monte Carlo simulation of the liquid–vapor interface of water using an ab initio potential. J Chem Phys. 1993;99:3933–3937.
  • Matsumoto M, Takaoka Y, Kataoka Y. Liquid–vapor interface of water–methanol mixture. i. Computer simulation. J Chem Phys. 1993;98:1464.
  • Alejandre J, Tildesley DJ, Chapela GA. Molecular dynamics simulation of the orthobaric densities and surface tension of water. J Chem Phys. 1995;102:4574–4583.
  • Irving JH, Kirkwood J. The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. J Chem Phys. 1950;18:817–829.
  • Walton JPRB, Tildesley DJ, Rowlinson JS, et al. The pressure tensor at the planar surface of a liquid. Mol Phys. 1983;48(6):1357–1368.
  • Walton JPRB, Tildesley DJ, Rowlinson JS, et al. The pressure tensor at the planar surface of a liquid. Mol Phys. 1983;50(6):1381. Erratum
  • Ghoufi A, Goujon F, Lachet V, et al. Surface tension of water and acid gases from Monte Carlo simulations. J Chem Phys. 2008;128(15):154716–154731.
  • Zhu SB, Fillingim TG, Robinson G. Flexible simple point-charge water in a self-supporting thin film. J Chem Phys. 1991;95:1002–1006.
  • Huang DM, Geissler PL, Chandler D. Scaling of hydrophobic solvation free energies. J Phys Chem B. 2001;105:6704–6709.
  • Hoogerbrugge PJ, Koelman JMVA. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys Lett. 1992;19:155–160.
  • Groot RD, Warren PB. Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J Chem Phys. 1997;107:4423–4435.
  • Warren PB. Vapor-liquid coexistence in many-body dissipative particle dynamics. Phys Rev E. 2003;68:066702.
  • Goujon F, Malfreyt P, Simon JM, et al. Monte carlo versus molecular dynamics simulations in heterogeneous systems: an application to the n-pentane liquid–vapor interface. J Chem Phys. 2004;121:12559–12571.
  • Chapela GA, Saville G, Thompson SM, et al. Computer simulation of a gas–liquid surface 1. J Chem Soc Faraday Trans II. 1977;73:1133–1144.
  • Blokhuis EM, Bedaux D, Holcomb CD, et al. Tail corrections to the surface tension of a Lennard–Jones liquid–vapour interface. Mol Phys. 1995;85:665–669.
  • Guo M, Peng BY, Lu CY. On the long-range corrections to computer simulation results for the Lennard–Jones vapor–liquid interface. Fluid Phase Equilib. 1997;130:19–30.
  • Lopez-Lemus J, Alejandre J. Simulation of phase equilibria and interfacial properties of binary mixtures on the liquid-vapour interface using lattice sums. Mol Phys. 2003;101:743–751.
  • Goujon F, Ghoufi A, Malfreyt P, et al. Controlling the long-range corrections in atomistic Monte Carlo simulations of two-phase systems. J Chem Theory Comput. 2015;11:4575–4585.
  • Guo M, Lu BCY. Long range corrections to mixture properties of inhomogeneous systems. J Chem Phys. 1998;109:1134.
  • Ismail AE, Grest GS, Stevens MJ. Capillary waves at the liquid–vapor interface and the surface tension of water of water. J Chem Phys. 2006;125:014702.
  • Alejandre J, Chapela GA. The surface tension of TIP4P/2005 water model using the Ewald sums for the dispersion interactions. J Chem Phys. 2010;132:014701.
  • Míguez JM, Salgado DG, Legido JL, et al. Calculation of interfacial properties using molecular simulation with the reaction field method: results for different water models. J Chem Phys. 2010;132:184102.
  • Mountain RD. An internally consistent method for the molecular dynamics simulation of the surface tension: application to some TIP4P-type models of water. J Phys Chem B. 2009;113:482–486.
  • Ghoufi A, Goujon F, Lachet V, et al. Multiple histogram reweighting method for the surface tension calculation. J Chem Phys. 2008;128:154718.
  • Marrink SJ, Risselada HJ, Yefimov S, et al. The martini force field: coarse grained model for biomolecular simulations. J Phys Chem B. 2007;111:7812–7824.
  • Chiu SW, Scott HL, Jakobsson E. A coarse-grained model based on morse potential for water and n-alkanes. J Chem Theory Comput. 2010;6:851–863.
  • Goujon F, Malfreyt P, Tildesley DJ. The gas–liquid surface tension of argon: a ceconciliation between experiment and simulation. J Chem Phys. 2014;140:244710.
  • Goujon F, Malfreyt P, Tildesley DJ. Response to comment on the gas–liquid surface tension of argon: a reconciliation between experiment and simulation [J. Chem. Phys. 142, 107101 (2015)]. J Chem Phys. 2015;142:107102.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.