203
Views
8
CrossRef citations to date
0
Altmetric
Articles

Using limiting activity coefficients to efficiently evaluate the ability of fixed-charge force fields to model miscible water plus cosolvent mixtures

, , & ORCID Icon
Pages 322-335 | Received 11 Jul 2018, Accepted 25 Sep 2018, Published online: 11 Oct 2018

References

  • Kalepu S, Nekkanti V. Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharm Sin B. 2015;5:442–453. doi: 10.1016/j.apsb.2015.07.003
  • Grodowska K, Parczewski A. Organic solvents in the pharmaceutical industry. Acta Pol Pharm – Drug Res. 2010;67:3–12.
  • Constable DJC, Jimenez-Gonzalez C, Henderson RK. Perspective on solvent use in the pharmaceutical industry. Org Process Res Dev. 2007;11:133–137. doi: 10.1021/op060170h
  • Mellmer MA, Sener C, Gallo JMR, et al. Solvent effects in acid-catalyzed biomass conversion reactions. Agnew Chem Int Ed. 2014;53:11872–11875. doi: 10.1002/anie.201408359
  • Walker TW, Chew AK, Li H, et al. Universal kinetic solvent effects in acid-catalyzed reactions of biomass-derived oxygenates. Energy Environ Sci. 2018;11:617–628. doi: 10.1039/C7EE03432F
  • Freund H, Sundmacher K. in Ullmann's Encyclopedia of Industrial Chemistry (2011; DOI:10.1002/14356007.o22_o02), pp. 1–23, DOI:10.1002/14356007.o22_o02
  • Perera A, Sokolić F. Modeling nonionic aqueous solutions: the acetone-water mixture. J Chem Phys. 2004;121:11272. doi: 10.1063/1.1817970
  • Jedlovszky P, Idrissi A, Jancsó G. Can existing models qualitatively describe the mixing behavior of acetone with water?. J Chem Phys. 2009;130:124516. doi: 10.1063/1.3086859
  • de Jesús-González NE, de la Luz AP, Alejandre JLJ. Effect of the dielectric constant on the solubility of acetone in water. J Chem Eng Data. 2018;63:1170–1179. doi: 10.1021/acs.jced.7b00573
  • Martínez-Jiménez M, Saint-Martin H. A four-site molecular model for simulations of liquid methanol and water methanol mixtures: MeOH-4P. J Chem Theory Comput. 2018;14:2526–2537. doi: 10.1021/acs.jctc.7b01265
  • Pinke A. Modeling of mixing acetone and water: how can their full miscibility be reproduced in computer simulations?. J Phys Chem B. 2012;116:5977–5984. doi: 10.1021/jp302629r
  • Pereyra RG, Asar ML, Carignano MA. The role of acetone dipole moment in acetone-water mixture. Chem Phys Lett. 2011;507:240–243. doi: 10.1016/j.cplett.2011.04.015
  • Lavino AD, Banetta L, Carbone P, et al. Extended charge-on-particle optimized potentials for liquid simulation acetone model: the case of acetone water mixtures. J Phys Chem B. 2018;122:5234–5241. doi: 10.1021/acs.jpcb.8b01293
  • Rusu VH, Bachmann S, van Gunsteren WF. GROMOS polarisable model for acetone. Mol Phys. 2016;114:845–854. doi: 10.1080/00268976.2015.1126366
  • Perera A, Zoranić L, Sokolić F, et al. A comparative molecular dynamics study of water methanol and acetone methanol mixtures. J Mol Liq. 2011;159:52–59. doi: 10.1016/j.molliq.2010.05.006
  • González-Salgado D, Nezbeda I. Excess properties of aqueous mixtures of methanol: simulation versus experiment. Fluid Phase Equilib. 2006;240:161–166. doi: 10.1016/j.fluid.2005.12.007
  • Mouc˘ka F, Nezbeda I. Water methanol mixtures with non-Lorentz Berthelot combining rules: a feasibility study. J Mol Liq. 2011;159:47–51. doi: 10.1016/j.molliq.2010.05.005
  • Ploetz EA, Rustenburg AS, Geerke DP, et al. To polarize or not to polarize? Charge-on-spring versus KBFF models for water and methanol bulk and vapor liquid interfacial mixtures. J Chem Theory Comput. 2016;12:2373–2387. doi: 10.1021/acs.jctc.5b01115
  • Weerasinghe S, Smith PE. A Kirkwood buff derived force field for methanol and aqueous methanol solutions. J Phys Chem B. 2005;109:15080–15086. doi: 10.1021/jp051773i
  • Weerasinghe S, Smith PE. Kirkwood buff derived force field for mixtures of acetone and water. J Chem Phys. 2003;118:10663–10670. doi: 10.1063/1.1574773
  • Kang M, Perera A, Smith PE. Comment on ”Can existing models quantitatively describe the mixing behavior of acetone with water”. J Chem Phys. 2009;131:157101.
  • Vitha M, Carr PW. The chemical interpretation and practice of linear solvation energy relationships in chromatography. J Chromatogr A. 2006;1126:143–194. doi: 10.1016/j.chroma.2006.06.074
  • Gautreaux Jr. MF, Coates J. Activity coefficients at infinite dilution. AIChE J. 1955;1:496–500. doi: 10.1002/aic.690010419
  • Eckert CA, Newman BA, Nicolaides GL, et al. Measurement and application of limiting activity coefficients. AIChE J. 1981;27:33–40. doi: 10.1002/aic.690270107
  • Brandani V. Use of infinite-dilution activity coefficients for predicting Azeotrope formation at constant temperature and partial miscibility in binary liquid mixtures. Ind Eng Chem Fundam. 1974;13:154–156. doi: 10.1021/i160050a012
  • Tiegs D, Gmehling J, Medina A, editors. Activity coefficients at infinite dilution, Part 1: C1–C9. Frankfurt am Main, Germany: DECHEMA; 1986.
  • Tiegs D, Gmehling J, Medina A, editors. Activity coefficients at infinite dilution, Part 1: C10–C36. Frankfurt am Main, Germany: DECHEMA; 1986.
  • Gmehling J, Menke J, Schiller M, editors. Activity coefficients at infinite dilution, Part 3: C1–C9. Frankfurt am Main, Germany: DECHEMA; 1994.
  • Gmehling J, Menke J, Schiller M, editors. Activity coefficients at infinite dilution, Part 4: C10–C36 with O2S and H2O. Frankfurt am Main, Germany: DECHEMA; 1994.
  • Gmehling J, Menke J, editors. Activity coefficients at infinite dilution, Part 5: C1–C16. Frankfurt am Main, Germany: DECHEMA; 2007.
  • Gmehling J, Menke J, editors. Activity coefficients at infinite dilution, Part 6: C17–C78 with D2O and H2O. Frankfurt am Main, Germany: DECHEMA; 2008.
  • Poling BE, Prausnitz JM, O'Connell JP. The properties of gases and liquids. 5th ed. New York, NY: McGraw-Hill Education; 2001.
  • Thomas ER, Eckert CA. Prediction of limiting activity coefficients by a modified separation of cohesive energy density model and UNIFAC. Ind Eng Chem Proc Des Dev. 1984;23:194–209. doi: 10.1021/i200025a002
  • Lazzaroni MJ, Bush D, Eckert CA, et al. Revision of MOSCED parameters and extension to solid solubility calculations. Ind Eng Chem Res. 2005;44:4075–4083. doi: 10.1021/ie049122g
  • Ley RT, Fuerst GB, Redeker BN, et al. Developing a predictive form of MOSCED for nonelectrolyte solids using molecular simulation: application to acetanilide, acetaminophen, and phenacetin. Ind Eng Chem Res. 2016;55:5415–5430. doi: 10.1021/acs.iecr.5b04807
  • Phifer JR, Solomon KJ, Young KL, et al. Computing MOSCED parameters of nonelectrolyte solids with electronic structure methods in SMD and SM8 continuum solvents. AIChE J. 2017;63:781–791. doi: 10.1002/aic.15413
  • Dhakal P, Roese SN, Stalcup EM, et al. Application of MOSCED to predict limiting activity coefficients, hydration free energies, Henry's constants, octanol/water partition coefficients, and isobaric azeotropic vapor liquid equilibrium. J Chem Eng Data. 2018;63:352–364. doi: 10.1021/acs.jced.7b00748
  • Dhakal P, Roese SN, Stalcup EM, et al. GC-MOSCED: a group contribution method for predicting MOSCED parameters with application to limiting activity coefficients in water and octanol/water partition coefficients. Fluid Phase Equilib. 2018;470:232–240. doi: 10.1016/j.fluid.2017.11.024
  • Chipot C, Pohorille A, editors. Free energy calculations: theory and applications in chemistry and biology. Vol. 86. New York, NY:Springer, 2007, Springer series in chemical physics.
  • Shirts MR, Chodera JD. Statistically optimal analysis of samples from multiple equilibrium states. J Chem Phys. 2008;129:124105.
  • Bennett CH. Efficient estimation of free energy differences from Monte Carlo data. J Comp Phys. 1976;22:245–268. doi: 10.1016/0021-9991(76)90078-4
  • Shirts MR, Bair E, Hooker G, et al. Equilibrium free energies from nonequilibrium measurements using maximum-likelihood methods. Phys Rev Lett. 2003;91:140601. doi: 10.1103/PhysRevLett.91.140601
  • Lu N, Singh JK, Kofke DA. Appropriate methods to combine forward and reverse free-energy perturbation averages. J Chem Phys. 2003;118:2977–2984. doi: 10.1063/1.1537241
  • Shirts MR, Pitera JW, Swope WC, et al. Extremely precise free energy calculations of amino acid side chain analogs: comparison of common molecular mechanics force fields for proteins. J Chem Phys. 2003;119:5740–5761. doi: 10.1063/1.1587119
  • Klimovich PV, Shirts MR, Mobley DL. Guidelines for the analysis of free energy calculations. J Comput Aided Mol Des. 2015;29:397–411. doi: 10.1007/s10822-015-9840-9
  • Paliwal H, Shirts MR. A benchmark test set for alchemical free energy transformations and its use to quantify error in common free energy methods. J Chem Theory Comput. 2011;7:4115–4134. doi: 10.1021/ct2003995
  • Paluch AS, Mobley DL, Maginn EJ. Small molecule solvation free energy: enhanced conformational sampling using expanded ensemble molecular dynamics simulation. J Chem Theory Comput. 2011;7:2910–2918. doi: 10.1021/ct200377w
  • Heidari M, Kremer K, Cortes-Huerto R, et al. Spatially resolved thermodynamic integration: an efficient method to compute chemical potentials of dense fluids. J Chem Theory Comput. 2018;14:3409–3417. doi: 10.1021/acs.jctc.8b00002
  • Kofke DA, Cummings PT. Quantitative comparison and optimization of methods for evaluating the chemical potential by molecular simulation. Mol Phys. 1997;92:973–996. doi: 10.1080/002689797169600
  • Kofke DA, Cummings PT. Precision and accuracy of staged free-energy perturbation methods for computing the chemical potential by molecular simulation. Fluid Phase Equilib. 1998;150–151:41–49. doi: 10.1016/S0378-3812(98)00274-X
  • Prausnitz JM, Lichtenthaler RN, de Azevedo EG. Molecular thermodynamics of fluid-phase equilibria. 3rd ed. Upper Saddle River, NJ: Prentice Hall PTR; 1999.
  • Paluch AS, Jayaraman S, Shah JK, et al. A method for computing the solubility limit of solids: application to sodium chloride in water and alcohols. J Chem Phys. 2010;133:124504. doi: 10.1063/1.3478539
  • Shing KS, Chung ST. Computer simulation methods for the calculation of solubility in supercritical extraction systems. J Phys Chem. 1987;91:1674–1681. doi: 10.1021/j100290a077
  • Paluch AS, Maginn EJ. Predicting the solubility of solid phenanthrene: a combined molecular simulation and group contribution approach. AIChE J. 2013;59:2647–2661. doi: 10.1002/aic.14020
  • Fuerst GB, Ley RT, Paluch AS. Calculating the fugacity of pure, low volatile liquids via molecular simulation with application to acetanilide, acetaminophen, and phenacetin. Ind Eng Chem Res. 2015;54:9027–9037. doi: 10.1021/acs.iecr.5b01827
  • Noroozi J, Paluch AS. Microscopic structure and solubility predictions of multifunctional solids in supercritical carbon dioxide: a molecular simulation study. J Phys Chem B. 2017;121:1660–1674. doi: 10.1021/acs.jpcb.6b12390
  • Barrat JL, Klein ML. Molecular dynamics simulations of supercooled liquids near the glass transition. Annu Rev Phys Chem. 1991;42:23. doi: 10.1146/annurev.pc.42.100191.000323
  • Mountain RD, Thirumalai D. Loss of ergodicity in glassy systems. AIP Conf Proc. 1992;256:165. doi: 10.1063/1.42456
  • Thirumalai D, Mountain RD, Kirkpatrick TR. Ergodic behavior in supercooled liquids and in glasses. Phys Rev A. 1989;39:3563. doi: 10.1103/PhysRevA.39.3563
  • Leach AR. Molecular modelling: principles and applications. 2nd ed. Harlow, England: Pearson Education Limited; 2001.
  • Frenkel D, Smit B. Understanding molecular simulation: from algorithms to applications. 2nd ed. San Diego, CA: Academic Press; 2002.
  • Martin MG, Siepmann JI. Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes. J Phys Chem B. 1998;102:2569. doi: 10.1021/jp972543+
  • Martin MG, Siepmann JI. Novel configurational-bias Monte Carlo method for branched molecules. transferable potentials for phase equilibria. 2. United-atom description of branched alkanes. J Phys Chem B. 1999;103:4508. doi: 10.1021/jp984742e
  • Chen B, Potoff JJ, Siepmann JI. Monte Carlo calculations for alcohols and their mixtures with alkanes. transferable potentials for phase equilibria. 5. United-atom description of primary, secondary, and tertiary Alcohols. J Phys Chem B. 2001;105:3093. doi: 10.1021/jp003882x
  • Jorgensen WL. Optimized intermolecular potential functions for liquid alcohols. J Phys Chem. 1986;90:1276–1284. doi: 10.1021/j100398a015
  • Kamath G, Georgiev G, Potoff JJ. Molecular modeling of phase behavior and microstructure of acetone-chloroform-methanol binary mixtures. J Phys Chem B. 2012;116:19463–19473.
  • Yazaydin AO, Thompson RW. Simulating the vapour liquid equilibria of 1,4-dioxane. Mol Sim. 2006;32:657–662. doi: 10.1080/08927020600883277
  • Jorgensen WL, Chandrasekhar J, Madura JD, et al. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79:926. doi: 10.1063/1.445869
  • Chen B, Siepmann JI. Microscopic structure and solvation in dry and wet octanol. J Phys Chem B. 2006;110:3555–3563. doi: 10.1021/jp0548164
  • Rafferty JL, Sun L, Siepmann JI, et al. Investigation of the driving forces for retention in reversed-phase liquid chromatography: Monte Carlo simulations of solute partitioning between n-hexadecane and various aqueous organic mixtures. Fluid Phase Equilib. 2010;290:25–35. doi: 10.1016/j.fluid.2009.10.010
  • Bai P, Siepmann JI. Gibbs ensemble monte carlo simulations for the liquid liquid phase equilibria of dipropylene glycol dimethyl ether and water: a preliminary report. Fluid Phase Equilib. 2011;310:11–18. doi: 10.1016/j.fluid.2011.06.003
  • Hess B, Kutzner C, van der Spoel D, et al. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput. 2008;4:435–447. doi: 10.1021/ct700301q
  • Pronk S, Páll S, Schulz R, et al. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics. 2013;29:845–854. doi: 10.1093/bioinformatics/btt055
  • GROMACS. Fast, flexible, free [cited 2013 Aug 1]. Available from: http://www.gromacs.org/
  • Martínez L, Andrade R, Birgin EG, et al. PACKMOL: a package for building initial configurations for molecular dynamics simulations. J Comput Chem. 2009;30(13):2157–2164. doi: 10.1002/jcc.21224
  • Packmol. Packing optimization for molecular dynamics simulations [cited 2013 Aug 1]. Available from: http://www.ime.unicamp.br/martinez/packmol/
  • van der Spoel D, Lindahl E, Hess B and the GROMACS development team, GROMACS User Manual version 4.6.3 2013. Available from: ftp://ftp.gromacs.org/pub/manual/manual-4.6.3.pdf
  • van Gunsteren WF, Berendsen HJC. A leap-frog algorithm for stochastic dynamics. Mol Simulat. 1988;1:173–185. doi: 10.1080/08927028808080941
  • Berendsen HJC. Simulating the physical world: hierarchial modeling from quantum mechanics to fluid dynamics. New York, NY: Cambridge University Press; 2007.
  • Berendsen HJC, Postma JPM, DiNola A, et al. Molecular dynamics with coupling to an external bath. J Chem Phys. 1984;81:3684–3690. doi: 10.1063/1.448118
  • Parrinello M, Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys. 1981;52:7182–7190. doi: 10.1063/1.328693
  • Nosé S, Klein ML. Constant pressure molecular dynamics for molecular systems. Mol Phys. 1983;50:1055–1076. doi: 10.1080/00268978300102851
  • Hess B, Bekker H, Berendsen HJC, et al. LINCS: A linear constraint solver for molecular simulations. J Comput Chem. 1997;18:1463–1472.
  • Hess B. P-LINCS: a parallel linear constraint solver for molecular simulation. J Chem Theory Comput. 2008;4:116–122. doi: 10.1021/ct700200b
  • Beutler TC, Mark AE, van Schaik RC, et al. Avoiding singularities and numerical instabilities in free energy calculations based on molecular simulations. Chem Phys Lett. 1994;222:529–539. doi: 10.1016/0009-2614(94)00397-1
  • Shirts MR, Pande VS. Solvation free energies of amino acid side chain analogs for common molecular mechanics water models. J Chem Phys. 2005;122:134508.
  • Steinbrecher T, Mobley DL, Case DA. Nonlinear scaling schemes for Lennard-Jones interactions in free energy calculations. J Chem Phys. 2007;127:214108. doi: 10.1063/1.2799191
  • PyMBAR. Python implementation of the multistate Bennett acceptance ratio (MBAR) [cited 2014 May 1]. Available from: https://github.com/choderalab/pymbar
  • Chodera JD, Swope WC, Pitera JW, et al. Use of the weighted histogram analysis method for the analysis of simulated and parallel tempering simulations. J Chem Theory Comput. 2007;3:26–41. doi: 10.1021/ct0502864
  • Benson GC, Kiyohara O. Thermodynamics of aqueous mixtures of nonelectrolytes. I. Excess volumes of water-n-alcohol mixtures at several temperatures. J Solution Chem. 1980;9:791–804. doi: 10.1007/BF00646798
  • Davis MI, Ham ES. Analysis and interpretation of excess molar properties of amphiphile + water systems. Thermochim Acta. 1991;190:251–258. doi: 10.1016/0040-6031(91)85251-C
  • Acosta-Esquijarosa J, Rodríguez-Donis I, Pardillo-Fontdevila E. Physical properties and their corresponding changes of mixing for the ternary mixture acetone+n-hexane+water at 298.15K. Thermochim Acta. 2006;443:93–97. doi: 10.1016/j.tca.2006.01.008
  • Besbes R, Ouerfelli N, Latrous H. Density, dynamic viscosity, and derived properties of binary mixtures of 1,4 dioxane with water at T=298.15?K. J Mol Liq. 2009;145:1–4. doi: 10.1016/j.molliq.2008.09.009
  • Lama RF, Lu BC. Excess thermodynamic properties of aqueous alcohol solutions. J Chem Eng Data. 1965;10:216–219. doi: 10.1021/je60026a003
  • French HT. Excess enthalpies of (acetone + water) at 278.15, 288.15, 298.15, 308.15, 318.15, and 323.15 K. J Chem Thermodynamics. 1989;21:801–809. doi: 10.1016/0021-9614(89)90026-8
  • Suzuki T, Fujisawa M, Takagi S, et al. Excess enthalpies of water+1,4-dioxane at 278.15, 298.15, 318.15 and 338.15 K. J Therm Anal Calorim. 2006;85:545–550. doi: 10.1007/s10973-006-7658-3
  • CHEMCAD. 7.1.0.9402. Available from: <http://www.chemstations.com>
  • Mathias PM. Guidelines for the analysis of vapor liquid equilibrium data. J Chem Eng Data. 2017;62:2231–2233. doi: 10.1021/acs.jced.7b00582
  • Mathias PM. Effect of VLE uncertainties on the design of separation sequences by distillation? Study of the benzene chloroform acetone system. Fluid Phase Equilib. 2016;408:265–272. doi: 10.1016/j.fluid.2015.09.004
  • Schreiber LB, Eckert CA. Use of infinite dilution activity coefficients with Wilson's equation. Ing Eng Chem Process Des Develop. 1971;10:572–576. doi: 10.1021/i260040a025
  • Loblen GM, Prausnitz JM. Infinite-dilution activity coefficients from differential ebulliometry. Ind Eng Chem Process Des Develop. 1982;10:109–113.
  • Berendsen HJC, Grigera JR, Straatsma TP. The missing term in effective pair potentials. J Phys Chem. 1987;91:6269–6271. doi: 10.1021/j100308a038
  • Chen F. Ph. D. thesis] Kansas State University; 2010
  • Rouha M, Nezbeda I. Non-Lorentz Berthelot Lennard-Jones mixtures: a systematic study. Fluid Phase Equilib. 2009;277:42–48. doi: 10.1016/j.fluid.2008.11.007
  • Yaws CL. Yaws' Critical Property Data for Chemical Engineers and Chemists (Knovel, Available from: https://app.knovel.com/hotlink/toc/id:kpYCPDCECD/yaws-critical-property/yaws-critical-property, 2012; 2013; 2014)
  • Yaws CL, Narasimhan PK, Gabbula C. Yaws' Handbook of Antoine Coefficients for Vapor Pressure (2nd Electronic Edition) (Knovel, Available from: https://app.knovel.com/hotlink/toc/id:kpYHACVPEH/yaws-handbook-antoine/yaws-handbook-antoine, 2009)
  • Marenich AV, Cramer CJ, Truhlar DG. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B. 2009;113:6378–6396. doi: 10.1021/jp810292n
  • Cramer CJ. Essentials of computational chemistry. Chichester, West Sussex, England: Wiley; 2002.
  • Zhao Y, Truhlar DG. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Account. 2008;120:215–241. doi: 10.1007/s00214-007-0310-x
  • Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 09, Revision C.01 2009
  • Marenich AV, Cramer CJ, Truhlar DG. Performance of SM6, SM8, and SMD on the SAMPL1 test set for the prediction of small-molecule solvation free energies. J Phys Chem B. 2009;113:4538–4543. doi: 10.1021/jp809094y
  • Ribeiro RF, Marenich AV, Cramer CJ, et al. Prediction of SAMPL2 aqueous solvation free energies and tautomeric ratios using the SM8, SM8AD, and SMD solvation models. J Comput Aided Mol Des. 2010;24:317–333. doi: 10.1007/s10822-010-9333-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.