304
Views
3
CrossRef citations to date
0
Altmetric
Articles

The integrated DL_POLY/DL_FIELD/DL_ANALYSER software platform for molecular dynamics simulations for exploration of the synthonic interactions in saturated benzoic acid/hexane solutions

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 257-272 | Received 18 May 2018, Accepted 12 Dec 2018, Published online: 31 Jan 2019

References

  • EPSRC Grand Challenge Network in Directed Assembly. [accessed 2014 Dec 3]; Available from: http://beyondthemolecule.org.uk/d6/.
  • Desiraju GR. Designer crystals: intermolecular interactions, network structures and supramolecular synthons. Acta Crystallogr, Sect A: Found Crystallogr. 1996;52:C2–C2. doi: 10.1107/S0108767396098947
  • Thalladi VR, Goud BS, Hoy VJ, et al. Supramolecular synthons in crystal engineering. Structure simplification, synthon robustness and supramolecular retrosynthesis. Chem Commun. 1996;3:401–402. doi: 10.1039/cc9960000401
  • Etter MC. Encoding and decoding hydrogen-bond patterns of organic-compounds. Acc Chem Res. 1990;23(4):120–126. doi: 10.1021/ar00172a005
  • Etter MC, Macdonald JC, Bernstein J. Graph-set analysis of hydrogen-bond patterns in organic-crystals. Acta Crystallogr, Sect B: Struct Sci. 1990;46:256–262. doi: 10.1107/S0108768189012929
  • Roberts KJ, Hammond RB, Ramachandran V, et al. Synthonic engineering: from molecular and crystallographic structure to the rational design of pharmaceutical solid dosage forms. In: Abramov Y, editor. Computational approaches in pharmaceutical solid state chemistry. Hoboken (NJ): Wiley; 2016. p. 175–207.
  • Pickering J, Hammond RB, Ramachandran V, et al. Synthonic Engineering modelling tools for product and process design. In: Roberts KJ, Docherty R, Tamura R, editors. Engineering crystallography: From molecule to crystal to functional form. Dordrecht: Springer Netherlands; 2017. p. 155–176.
  • Rosbottom I, Roberts KJ, Docherty R. The solid state, surface and morphological properties of p-aminobenzoic acid in terms of the strength and directionality of its intermolecular synthons. CrystEngComm. 2015;17(30):5768–5788. doi: 10.1039/C5CE00302D
  • Moldovan AA, Rosbottom I, Ramachandran V, et al. Crystallographic structure, intermolecular packing energetics, crystal morphology and surface chemistry of salmeterol xinafoate (form I). J Pharm Sci. 2017;106(3):882–891. doi: 10.1016/j.xphs.2016.11.016
  • Nguyen TTH, Rosbottom I, Marziano I, et al. Crystal morphology and interfacial stability of RS-Ibuprofen in relation to its molecular and synthonic structure. Cryst Growth Des. 2017;17(6):3088–3099. doi: 10.1021/acs.cgd.6b01878
  • Rosbottom I, Ma CY, Turner TD, et al. Influence of solvent composition on the crystal morphology and structure of p-aminobenzoic acid crystallized from mixed ethanol and nitromethane solutions. Cryst Growth Des. 2017;17(8):4151–4161. doi: 10.1021/acs.cgd.7b00425
  • Rosbottom I, Roberts KJ. Crystal growth and morphology of molecular crystals. In: Roberts KJ, Docherty R, Tamura R, editors. Engineering crystallography: from molecule to crystal to functional form. Dordrecht: Springer Netherlands; 2017. p. 109–131.
  • Ramachandran V, Murnane D, Hammond RB, et al. Formulation pre-screening of inhalation powders using computational atom–atom systematic search method. Mol Pharm. 2014;12(1):18–33. doi: 10.1021/mp500335w
  • Kashchiev D, Vekilov PG, Kolomeisky AB. Kinetics of two-step nucleation of crystals. J Chem Phys. 2005;122(24):244706. doi: 10.1063/1.1943389
  • Vekilov PG. Two-step mechanism for the nucleation of crystals from solution. J Cryst Growth. 2005;275(1–2):65–76. doi: 10.1016/j.jcrysgro.2004.10.068
  • Hamad S, Moon C, Catlow CRA, et al. Kinetic insights into the role of the solvent in the polymorphism of 5-fluorouracil from molecular dynamics simulations. J Phys Chem B. 2006;110(7):3323–3329. doi: 10.1021/jp055982e
  • Erdemir D, Lee AY, Myerson AS. Nucleation of crystals from solution: Classical and two-step models. Acc Chem Res. 2009;42(5):621–629. doi: 10.1021/ar800217x
  • Vekilov PG. Nucleation. Cryst Growth Des. 2010;10(12):5007–5019. doi: 10.1021/cg1011633
  • Vekilov PG. The two-step mechanism of nucleation of crystals in solution. Nanoscale. 2010;2(11):2346–2357. doi: 10.1039/c0nr00628a
  • Jawor-Baczynska A, Moore BD, Lee HS, et al. Population and size distribution of solute-rich mesospecies within mesostructured aqueous amino acid solutions. Faraday Discuss. 2014;167:425–440. doi: 10.1039/c3fd00066d
  • Jawor-Baczynska A, Sefcik J, Moore BD. 250 nm glycine-rich nanodroplets are formed on dissolution of glycine crystals but are too small to provide productive nucleation sites. Cryst Growth Des. 2013;13(2):470–478. doi: 10.1021/cg300150u
  • Di Tommaso D, Watson KL. Density functional theory study of the oligomerization of carboxylic acids. J Phys Chem A. 2014;118(46):11098–11113. doi: 10.1021/jp509100u
  • Gaines E, Maisuria K, Di Tommaso D. The role of solvent in the self-assembly of m-aminobenzoic acid: a density functional theory and molecular dynamics study. CrystEngComm. 2016;18(16):2937–2948. doi: 10.1039/C6CE00130K
  • DL_Software is the collective term for a range of scientific software developed at the Daresbury Laboratory, spanning across multi-length and -time scales. Available from: https://www.scd.stfc.ac.uk/Pages/Materials-Modelling-Software.aspx.
  • Todorov IT, Smith W, Trachenko K, et al. DL_POLY_3: new dimensions in molecular dynamics simulations via massive parallelism. J Mater Chem. 2006;16(20):1911–1918. doi: 10.1039/b517931a
  • Yong CW. Descriptions and implementations of DL_F notation: a natural chemical expression system of atom types for molecular simulations. J Chem Inf Model. 2016;56(8):1405–1409. doi: 10.1021/acs.jcim.6b00323
  • Yong C, Todorov I. DL_ANALYSER notation for atomic interactions (DANAI): a natural annotation system for molecular interactions, using ethanoic acid liquid as a test case. Molecules. 2018;23(1):36. doi: 10.3390/molecules23010036
  • Brooks BR, Bruccoleri RE, Olafson BD, et al. CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem. 1983;4(2):187–217. doi: 10.1002/jcc.540040211
  • Cornell WD, Cieplak P, Bayly CI, et al. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc. 1995;117(19):5179–5197. doi: 10.1021/ja00124a002
  • Damm W, Frontera A, Tirado–Rives J, et al. OPLS all-atom force field for carbohydrates. J Comput Chem. 1997;18(16):1955–1970. doi: 10.1002/(SICI)1096-987X(199712)18:16<1955::AID-JCC1>3.0.CO;2-L
  • Mayo SL, Olafson BD, Goddard WA. Dreiding - a generic force-field for molecular simulations. J Phys Chem. 1990;94(26):8897–8909. doi: 10.1021/j100389a010
  • Sun H, Mumby SJ, Maple JR, et al. An ab Initio CFF93 all-atom force field for polycarbonates. J Am Chem Soc. 1994;116(7):2978–2987. doi: 10.1021/ja00086a030
  • Dauber-Osguthorpe P, Roberts VA, Osguthorpe DJ, et al. Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase-trimethoprim, a drug-receptor system. Proteins Struct Funct Bioinf. 1988;4(1):31–47. doi: 10.1002/prot.340040106
  • Schmid N, Eichenberger AP, Choutko A, et al. Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur Biophys J. 2011;40(7):843–856. doi: 10.1007/s00249-011-0700-9
  • Davey RJ, Dent G, Mughal RK, et al. Concerning the relationship between structural and growth synthons in crystal nucleation: solution and crystal chemistry of carboxylic acids as revealed through IR spectroscopy. Cryst Growth Des. 2006;6(8):1788–1796. doi: 10.1021/cg060058a
  • Burton RC, Ferrari ES, Davey RJ, et al. The relationship between solution structure and crystal nucleation: a neutron scattering study of supersaturated methanolic solutions of benzoic acid. J Phys Chem B. 2010;114(26):8807–8816. doi: 10.1021/jp103099j
  • Banks JL, Beard HS, Cao Y, et al. Integrated modeling program, applied chemical theory (IMPACT). J Comput Chem. 2005;26(16):1752–1780. doi: 10.1002/jcc.20292
  • Infantes L, Chisholm J, Motherwell S. Extended motifs from water and chemical functional groups in organic molecular crystals. CrystEngComm. 2003;5(85):480–486. doi: 10.1039/b312846f
  • Vanommeslaeghe K, Hatcher E, Acharya C, et al. CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem. 2010;31(4):671–690.
  • Wang J, Wolf RM, Caldwell JW, et al. Development and testing of a general amber force field. J Comput Chem. 2004;25(9):1157–1174. doi: 10.1002/jcc.20035
  • Holmback X, Rasmuson AC. Size and morphology of benzoic acid crystals produced by drowning-out crystallisation. J Cryst Growth. 1999;198-199:780–788. doi: 10.1016/S0022-0248(98)01027-6
  • Sullivan RA, Davey RJ, Sadiq G, et al. Revealing the roles of desolvation and molecular self-assembly in crystal nucleation from solution: benzoic and p-Aminobenzoic acids. Cryst Growth Des. 2014;14(5):2689–2696. doi: 10.1021/cg500441g
  • McArdle P, Hu Y, Lyons A, et al. Predicting and understanding crystal morphology: the morphology of benzoic acid and the polymorphs of sulfathiazole. CrystEngComm. 2010;12(10):3119–3125. doi: 10.1039/c001071e
  • Liang ZZ, Chen JF, Ma Y, et al. Qualitative rationalization of the crystal growth morphology of benzoic acid controlled using solvents. Crystengcomm. 2014;16(27):5997–6002. doi: 10.1039/c4ce00776j
  • Clydesdale G, Docherty R, Roberts KJ. HABIT - a program for predicting the morphology of molecular crystals. Comput Phys Commun. 1991;64(2):311–328. doi: 10.1016/0010-4655(91)90040-R
  • Docherty R, Clydesdale G, Roberts KJ, et al. Application of Bravais-Friedel-Donnay-Harker, attachment energy and ising-models to predicting and understanding the morphology of molecular-crystals. J Phys D Appl Phys. 1991;24(2):89–99. doi: 10.1088/0022-3727/24/2/001
  • Momany FA, Carruthers LM, McGuire RF, et al. Intermolecular potentials from crystal data. III. Determination of empirical potentials and application to the packing configurations and lattice energies in crystals of hydrocarbons, carboxylic acids, amines, and amides. J Phys Chem. 1974;78(16):1595–1620. doi: 10.1021/j100609a005
  • Gasteiger J, Marsili M. New model for calculating atomic charges in molecules. Tetrahedron Lett. 1978;19:3181–3184. doi: 10.1016/S0040-4039(01)94977-9
  • Gasteiger J, Marsili M. Iterative partial equalization of orbital electronegativity - a rapid access to atomic charges. Tetrahedron. 1980;36(22):3219–3228. doi: 10.1016/0040-4020(80)80168-2
  • Berendsen HJC, Postma JPM, Gunsteren WFv, et al. Molecular dynamics with coupling to an external bath. J Chem Phys. 1984;81(8):3684–3690. doi: 10.1063/1.448118
  • Piana S, Gale JD. Understanding the barriers to crystal growth: dynamical simulation of the dissolution and growth of urea from aqueous solution. J Am Chem Soc. 2005;127(6):1975–1982. doi: 10.1021/ja043395l
  • Biovia DS. Biovia materials studio 2016.0. San Diego: Dassault Systèmes; 2016.
  • Clark SJ, Segall MD, Pickard CJ, et al. First principles methods using CASTEP. Z Kristallogr. 2005;220:567–570.
  • Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev. 1964;136:B864–B871. doi: 10.1103/PhysRev.136.B864
  • Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys Rev. 1965;140:A1133–A1138. doi: 10.1103/PhysRev.140.A1133
  • Payne MC, Teter MP, Allan DC, et al. Iterative minimization for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev Mod Phys. 1992;64:1045–1097. doi: 10.1103/RevModPhys.64.1045
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865
  • McNellis ER, Meyer J, Reuter K. Azobenzene at coinage metal surfaces: role of dispersive van der Waals interactions. Phys Rev B. 2009;80:205414. doi: 10.1103/PhysRevB.80.205414
  • Tkatchenko A, Scheffler M. Accurate molecular Van Der Waals interactions from ground-state electron density and free-atom reference data. Phys Rev Lett. 2009;102:0730051–4. doi: 10.1103/PhysRevLett.102.073005
  • Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations*. Phys Rev B. 1976;13:5188–5192. doi: 10.1103/PhysRevB.13.5188
  • Pfrommer BG, Côté M, Louie S, et al. Relaxation of crystals with the Quasi-Newton method. J Comput Phys. 1997;131:233–240. doi: 10.1006/jcph.1996.5612
  • Refson K, Clark SJ, Tulip PR. Variational density functional perturbation theory for dielectrics and lattice dynamics. Phys Rev B. 2006;73:155114. doi: 10.1103/PhysRevB.73.155114
  • Ribeiro da Silva MAV, Monte MJS, Santos LMNBF. The design, construction, and testing of a new Knudsen effusion apparatus. J Chem Thermodyn. 2006;38(6):778–787. doi: 10.1016/j.jct.2005.08.013
  • Di Tommaso D. The molecular self-association of carboxylic acids in solution: testing the validity of the link hypothesis using a quantum mechanical continuum solvation approach. CrystEngComm. 2013;15(33):6564–6577. doi: 10.1039/c3ce40539g
  • Cruz-Cabeza AJ, Davey RJ, Sachithananthan SS, et al. Aromatic stacking - a key step in nucleation. Chem Commun. 2017;53(56):7905–7908. doi: 10.1039/C7CC02423A
  • Greathouse JA, Geatches DL, Pike DQ, et al. Methylene blue adsorption on the basal surfaces of kaolinite: structure and thermodynamics from quantum and classical molecular simulation. Clays Clay Miner. 2015;63(3):185–198. doi: 10.1346/CCMN.2015.0630303

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.