204
Views
2
CrossRef citations to date
0
Altmetric
Articles

Linear growth of self-assembled alternating oligopeptide nanotubes with self-locking building blocks

, &
Pages 549-555 | Received 23 Apr 2018, Accepted 20 Dec 2018, Published online: 08 Jan 2019

References

  • Remškar M. Inorganic nanotubes. Adv Mater. 2004;16(17):1497–1504. doi: 10.1002/adma.200306428
  • Zhang S, Marini DM, Hwang W, et al. Design of nanostructured biological materials through self-assembly of peptides and proteins. Curr Opin Chem Biol. 2002;6(6):865–871. doi: 10.1016/S1367-5931(02)00391-5
  • Reches M, Gazit E. Molecular self-assembly of peptide nanostructures: mechanism of association and potential uses. Curr Nanosci. 2006;2(2):105–111. doi: 10.2174/157341306776875802
  • Rajagopal K, Schneider JP. Self-assembling peptides and proteins for nanotechnological applications. Curr Opin Struct Biol. 2004;14(4):480–486. doi: 10.1016/j.sbi.2004.06.006
  • Luo Z, Zhang S. Designer nanomaterials using chiral self-assembling peptide systems and their emerging benefit for society. Chem Soc Rev. 2012;41(13):4736–4754. doi: 10.1039/c2cs15360b
  • Bianco A, Kostarelos K, Prato M. Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol. 2005;9(6):674–679. doi: 10.1016/j.cbpa.2005.10.005
  • Matsui H, Pan S, Gologan B, et al. Bolaamphiphile nanotube-templated metallized wires. J Phys Chem B. 2000;104(41):9576–9579. doi: 10.1021/jp000762g
  • Reches M, Gazit E. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science. 2003;300(5619):625–627. doi: 10.1126/science.1082387
  • Kumar P, Pillay V, Modi G, et al. Self-assembling peptides: implications for patenting in drug delivery and tissue engineering. Recent Pat Drug Delivery Formulation. 2011;5(1):24–51. doi: 10.2174/187221111794109510
  • Scanlon S, Aggeli A. Self-assembling peptide nanotubes. Nano Today. 2008;3(3–4):22–30. doi: 10.1016/S1748-0132(08)70041-0
  • Zhao X, Pan F, Lu JR. Recent development of peptide self-assembly. Prog Nat Sci. 2008;18(6):653–660. doi: 10.1016/j.pnsc.2008.01.012
  • Liu L, Busuttil K, Zhang S, et al. The role of self-assembling polypeptides in building nanomaterials. Phys Chem Chem Phys. 2011;13(39):17435–17444. doi: 10.1039/c1cp21338e
  • Rösler A, Vandermeulen GW, Klok HA. Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv Drug Delivery Rev. 2012;64:270–279. doi: 10.1016/j.addr.2012.09.026
  • Malardier-Jugroot C, van de Ven TGM, Cosgrove T. Novel self-assembly of amphiphilic copolymers into nanotubes: characterization by small-angle neutron scattering. Langmuir. 2005;21(22):10179–10187. doi: 10.1021/la050888a
  • Lazzara TD, van de Ven TGM, Whitehead MA. Nanotube self-assembly of a styrene and maleimide alternating copolymer. Macromolecules. 2008;41(18):6747–6751. doi: 10.1021/ma800926a
  • Shulkin A, Stöver HD. Polymer microcapsules by interfacial polyaddition between styrene–maleic anhydride copolymers and amines. J Membr Sci. 2002;209(2):421–432. doi: 10.1016/S0376-7388(02)00348-4
  • Malardier-Jugroot C, van de Ven TGM, Whitehead MA. Characterization of a novel self-association of an alternating copolymer into nanotubes in solution. Mol Simul. 2005;31(2-3):173–178. doi: 10.1080/08927020512331328716
  • Lazzara TD, Whitehead MA, van de Ven TGM. Effect of chirality on π-stacking in styrene and maleimide alternating copolymers. J Phys Chem B. 2008;112(16):4892–4899. doi: 10.1021/jp710172y
  • da Silva ER, Alves WA, Castelletto V, et al. Self-assembly pathway of peptide nanotubes formed by a glutamatic acid-based bolaamphiphile. Chem Commun. 2015;51(58):11634–11637. doi: 10.1039/C5CC03640B
  • Cui H, Webber MJ, Stupp SI. Self-assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials. Pept Sci. 2010;94(1):1–18. doi: 10.1002/bip.21328
  • Schnur JM. Lipid tubules: a paradigm for molecularly engineered structures. Science. 1993;262(5140):1669–1676. doi: 10.1126/science.262.5140.1669
  • Cui H, Muraoka T, Cheetham AG, et al. Self-assembly of giant peptide nanobelts. Nano Lett. 2009;9(3):945–951. doi: 10.1021/nl802813f
  • Zhang S, Holmes T, Lockshin C, et al. Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc Natl Acad Sci U S A. 1993;90(8):3334–3338. doi: 10.1073/pnas.90.8.3334
  • Reches M, Gazit E. Formation of closed-cage nanostructures by self-assembly of aromatic dipeptides. Nano Lett. 2004;4(4):581–585. doi: 10.1021/nl035159z
  • Daube SS, Arad T, Bar-Ziv R. Cell-free co-synthesis of protein nanoassemblies: tubes, rings, and doughnuts. Nano Lett. 2007;7(3):638–641. doi: 10.1021/nl062560n
  • Gobeaux F, Fay N, Tarabout C, et al. Structural role of counterions adsorbed on self-assembled peptide nanotubes. J Am Chem Soc. 2011;134(1):723–733. doi: 10.1021/ja210299g
  • Guo C, Luo Y, Zhou R, et al. Probing the self-assembly mechanism of diphenylalanine-based peptide nanovesicles and nanotubes. ACS Nano. 2012;6(5):3907–3918. doi: 10.1021/nn300015g
  • Decandio CC, Silva ER, Hamley IW, et al. Self-assembly of a designed alternating arginine/phenylalanine oligopeptide. Langmuir. 2015;31(15):4513–4523. doi: 10.1021/acs.langmuir.5b00253
  • Stewart JJ. Application of the PM6 method to modeling proteins. J Mol Model. 2009;15(7):765–805. doi: 10.1007/s00894-008-0420-y
  • Urquiza-Carvalho GA, Fragoso WD, Rocha GB. Assessment of semiempirical enthalpy of formation in solution as an effective energy function to discriminate native-like structures in protein decoy sets. J Comput Chem. 2016;37(21):1962–1972. doi: 10.1002/jcc.24415
  • Stepanian S, Reva I, Radchenko E, et al. Matrix-isolation infrared and theoretical studies of the glycine conformers. J Phys Chem A. 1998;102(6):1041–1054. doi: 10.1021/jp973397a
  • Kishor S, Dhayal S, Mathur M, et al. Structural and energetic properties of α-amino acids: a first principles density functional study. Mol Phys. 2008;106(19):2289–2300. doi: 10.1080/00268970802422577
  • Conley K, Ryu CH, van de Ven TGM, et al. Molecular modelling of proteins into nano-tubes: a theoretical approach. The Proceedings of the Fundamental and Applied Pulp & Paper Modelling Symposium, 2011. Montreal (QC): Cascades Inc.; 2013. ISBN 978-2-9808323-7-6. p. 117–136.
  • Villamagna F, Whitehead MA. Comparison of complete conformational searching and the energy-optimized tree branch method in molecular mechanics calculations. J Chem Soc Faraday Trans. 1994;90(1):47–54. doi: 10.1039/ft9949000047
  • Scalmani G, Frisch MJ. Continuous surface charge polarizable continuum models of solvation. I. General formalism. J Chem Phys. 2010;132(11):114110. doi: 10.1063/1.3359469
  • Stewart JJ. Optimization of parameters for semiempirical methods V: modification of nddo approximations and application to 70 elements. J Mol Model. 2007;13(12):1173–1213. doi: 10.1007/s00894-007-0233-4
  • Csonka GI, Ángyán JG. The origin of the problems with the PM3 core repulsion function. J Mol Struct: THEOCHEM. 1997;393(1–3):31–38. doi: 10.1016/S0166-1280(96)04872-5
  • Cramer CJ, Truhlar DG. Quantum chemical conformational analysis of 1, 2-ethanediol: correlation and solvation effects on the tendency to form internal hydrogen bonds in the gas phase and in aqueous solution. J Am Chem Soc. 1994;116(9):3892–3900. doi: 10.1021/ja00088a027
  • Malardier-Jugroot C, van de Ven TGM, Whitehead MA. Linear conformation of poly (styrene-alt-maleic anhydride) capable of self-assembly: a result of chain stiffening by internal hydrogen bonds. J Phys Chem B. 2005;109(15):7022–7032. doi: 10.1021/jp0450944
  • Frisch M, Trucks G, Schlegel H, et al. Gaussian 09 Revision A.02; 2009. Wallingford (CT): Gaussian Inc.; 2009.
  • Schneider CA, Rasband WS, Eliceiri KW. NIH image to imageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–675. Available from: http://dx.doi.org/10.1038/nmeth.2089
  • Li X, Malardier-Jugroot C. Confinement effect in the synthesis of polypyrrole within polymeric templates in aqueous environments. Macromolecules. 2013;46(6):2258–2266. doi: 10.1021/ma3020799
  • Garnier G, Duskova-Smrckova M, Vyhnalkova R, et al. Association in solution and adsorption at an air-water interface of alternating copolymers of maleic anhydride and styrene. Langmuir. 2000;16(8):3757–3763. doi: 10.1021/la991440a

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.