1,108
Views
16
CrossRef citations to date
0
Altmetric
Articles

Structural evolution and dislocation behaviour study during nanoindentation of Mo20W20Co20Ta20Zr20 high entropy alloy coated Ni single crystal using molecular dynamic simulation

, , &
Pages 572-584 | Received 08 Oct 2018, Accepted 02 Jan 2019, Published online: 15 Jan 2019

References

  • Sato A, Chiu YL, Reed RC. Oxidation of nickel-based single-crystal super alloys for industrial gas turbine applications. Acta Mater. 2011;59(1):225–240.
  • Caron P, Khan T. Evolution of Ni-based superalloys for single crystal gas turbine blade applications. Aerosp Sci Technol. 1999;3(8):513–523.
  • Okasha MM, Mativenga PT, Driver N, et al. Sequential laser and mechanical micro-drilling of Ni superalloy for aerospace application. CIRP Ann Manuf Technol. 2010;59(1):199–202.
  • Furrer D, Fecht H. Ni-based superalloys for turbine discs. Jom. 1999;51(1):14–17.
  • Fecht H, Furrer D. Processing of nickel-base Superalloys for turbine engine Disc Applications. Adv Eng Mater. 2000;2(12):777–787.
  • Brenneman J, Wei J, Sun Z, et al. Oxidation behaviour of GTD111 Ni-based superalloy at 900°C in air. Corros Sci. 2015;100:267–274.
  • Singh H, Puri D, Prakash S. An overview of Na2SO4 and/or V2O5 induced hot corrosion of Fe-and Ni-based superalloys. Rev Adv Mater Sci. 2007;16:27–50.
  • Kamal S, Jayaganthan R, Prakash S. High temperature cyclic oxidation and hot corrosion behaviours of superalloys at 900°C. Bull Mater Sci. 2010;33(3):299–306.
  • Padture NP, Gell M, Jordan EH. Thermal barrier coatings for gas-turbine engine applications. Science. 2002;296(5566):280–284.
  • Pan D, Chen MW, Wright PK, et al. Evolution of a diffusion aluminide bond coat for thermal barrier coatings during thermal cycling. Acta Mater. 2003;51(8):2205–2217.
  • Müller J, Neuschütz D. Efficiency of α-alumina as diffusion barrier between bond coat and bulk material of gas turbine blades. Vacuum. 2003;71(1-2):247–251.
  • Tsai MH, Wang CW, Lai CH, et al. Thermally stable amorphous (Al Mo Nb Si Ta Ti V Zr) 50 N 50 nitride film as diffusion barrier in copper metallization. Appl Phys Lett. 2008;92(5):052109.
  • Gleeson B. Thermal barrier coatings for aeroengine applications. J Propul Power. 2006;22(2):375–383.
  • Chou YL, Yeh JW, Shih HC. The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co 1.5 CrFeNi 1.5 Ti 0.5 Mox in aqueous environments. Corros Sci. 2010;52(8):2571–2581.
  • Yeh JW. Alloy design strategies and future trends in high-entropy alloys. Jom. 2013;65(12):1759–1771.
  • Gao MC, Yeh JW, Liaw PK, et al. High-Entropy alloys: Fundamentals and Applications. Cham: Springer International Publishing; 2016.
  • Lu CJ, Bogy DB. The effect of tip radius on nanoindentation hardness tests. Int J Solids Struct. 1995;32(12):1759–1770.
  • Beegan D, Chowdhury S, Laugier MT. A nanoindentation study of copper films on oxidized silicon substrates. Surf Coat Technol. 2003;176(1):124–130.
  • Saha R, Nix WD. Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Mater. 2002;50(1):23–38.
  • Huang CC, Chiang TC, Fang TH. Grain size effect on indentation of nanocrystalline copper. Appl Surf Sci. 2015;353:494–498.
  • Wang CT, Jian SR, Jang JSC, et al. Multiscale simulation of nanoindentation on Ni (100) thin film. Appl Surf Sci. 2008;255(5):3240–3250.
  • Ju SP, Wang CT, Chien CH, et al. The nanoindentation responses of nickel surfaces with different crystal orientations. Mol Simul. 2007;33(11):905–917.
  • Ma Z, Long S, Pan Y, et al. Loading rate sensitivity of nanoindentation creep in polycrystalline Ni films. J Mater Sci. 2008;43(17):5952–5955.
  • Ma ZS, Long SG, Zhou YC, et al. Indentation scale dependence of tip-in creep behaviour in Ni thin films. Scr Mater. 2008;59(2):195–198.
  • Lou J, Shrotriya P, Buchheit T, et al. Nanoindentation study of plasticity length scale effects in LIGA Ni microelectromechanical systems structures. J Mater Res. 2003;18(3):719–728.
  • Kim KJ, Yoon JH, Cho MH, et al. Molecular dynamics simulation of dislocation behaviour during nanoindentation on a bicrystal with a Σ = 5 (210) grain boundary. Mater Lett. 2006;60(28):3367–3372.
  • Chang SW, Nair AK, Buehler MJ. Nanoindentation study of size effects in nickel–grapheme nanocomposites. Philos Mag Lett. 2013;93(4):196–203.
  • Armstrong DEJ, Haseeb ASMA, Roberts SG, et al. Nanoindentation and micro-mechanical fracture toughness of electrodeposited nanocrystalline Ni–W alloy films. Thin Solid Films. 2012;520(13):4369–4372.
  • Borgia C, Scharowsky T, Furrer A, et al. A combinatorial study on the influence of elemental composition and heat treatment on the phase composition, microstructure and mechanical properties of Ni–W alloy thin films. Acta Mater. 2011;59(1):386–399.
  • Huang Y, Aziz MJ, Hutchinson JW, et al. Comparison of mechanical properties of Ni 3 Al thin films in disordered FCC and ordered L1 2 phases. Acta Mater. 2001;49(14):2853–2861.
  • Wang W, Jiang CB, Lu K. Deformation behaviour of Ni 3 Al single crystals during nanoindentation. Acta Mater. 2003;51(20):6169–6180.
  • Domínguez-Ríos C, Hurtado-Macias A, Torres-Sánchez R, et al. Measurement of mechanical properties of an electroless Ni–B coating using nanoindentation. Ind Eng Chem Res. 2012;51(22):7762–7768.
  • Wu D, Jang JSC, Nieh TG. Elastic and plastic deformations in a high entropy alloy investigated using a nanoindentation method. Intermetallics. 2016;68:118–127.
  • Zaddach AJ, Niu C, Koch CC, et al. Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy. Jom. 2013;65(12):1780–1789.
  • Zhu C, Lu ZP, Nieh TG. Incipient plasticity and dislocation nucleation of FeCoCrNiMn high-entropy alloy. Acta Mater. 2013;61(8):2993–3001.
  • Baker SP, Nix WD. Mechanical properties of compositionally modulated Au-Ni thin films: nanoindentation and microcantilever deflection experiments. J Mater Res. 1994;9(12):3131–3144.
  • Cammarata RC, Schlesinger TE, Kim C, et al. Nanoindentation study of the mechanical properties of copper-nickel multilayered thin films. Appl Phys Lett. 1990;56(19):1862–1864.
  • Barshilia HC, Rajam KS. Characterization of Cu/Ni multilayer coatings by nanoindentation and atomic force microscopy. Surf Coat Technol. 2002;155(2-3):195–202.
  • Liu Y, Bufford D, Wang H, et al. Mechanical properties of highly textured Cu/Ni multilayers. Acta Mater. 2011;59(5):1924–1933.
  • Tall PD, Ndiaye S, Beye AC, et al. Nanoindentation of Ni–Ti thin films. Mater Manuf Process. 2007;22(2):175–179.
  • Kumar AN, Nair CS, Kannan MD, et al. TEM and nanoindentation studies on sputtered Ti 40 Ni 60 thin films. Mater Chem Phys. 2006;97(2-3):308–314.
  • Ruud JA, Jervis TR, Spaepen F. Nanoindentation of Ag/Ni multilayered thin films. J Appl Phys. 1994;75(10):4969–4974.
  • Kang BC, Kim HY, Kwon OY, et al. Bilayer thickness effects on nanoindentation behaviour of Ag/Ni multilayers. Scr Mater. 2007;57(8):703–706.
  • Wen SP, Zong RL, Zeng F, et al. Nanoindentation and nanoscratch behaviours of Ag/Ni multilayers. Appl Surf Sci. 2009;255(8):4558–4562.
  • Chen J, Bull SJ. The investigation of creep of electroplated Sn and Ni–Sn coating on copper at room temperature by nanoindentation. Surf Coat Technol. 2009;203(12):1609–1617.
  • Chen J, Bull SJ, Roy S, et al. Nanoindentation and nanowear study of Sn and Ni–Sn coatings. Tribol Int. 2009;42(6):779–791.
  • Cao Y, Zhang J, Liang Y, et al. Mechanical and tribological properties of Ni/Al multilayers—A molecular dynamics study. Appl Surf Sci. 2010;257(3):847–851.
  • Landman U, Luedtke WD, Ringer EM. Atomistic mechanisms of adhesive contact formation and interfacial processes. Wear. 1992;153(1):3–30.
  • Meng L, Sun Q, Wang J, et al. Molecular dynamics simulation of chemical vapor deposition graphene growth on Ni (111) surface. J Phys Chem. 2012;116(10):6097–6102.
  • Yan Y, Zhou S, Liu S. Atomistic simulation on nanomechanical response of indented graphene/nickel system. Comput Mater Sci. 2017;130:16–20.
  • Price MR, Ovcharenko A, Raeymaekers B. Qualitative evaluation of ultra-thin multi-layer diamond-like carbon coatings using molecular dynamics nanoindentation simulations. Tribol Lett. 2016;62(1):3.
  • Ghaffarian H, Taheri AK, Ryu S, et al. Molecular dynamics simulation of nanoindentation on nanocomposite pearlite. arXiv Preprint ArXiv: 1603.05153. 2016;16(9):1015–1025.
  • Xiang H, Li H, Fu T, et al. Molecular dynamics simulation of AlN thin films under nanoindentation. Ceram Int. 2017;43(5):4068–4075.
  • Reddy KV, Pal S. Analysis of deformation behaviour of Al–Ni–Co thin film coated aluminium during nano-indentation: a molecular dynamics study. Mol Simul. 2018;44(17):1393–1401.
  • Feng C, Peng X, Fu T, et al. Molecular dynamics simulation of nanoindentation on Ti-V multilayered thin films. Phys E. 2017;87:213–219.
  • Chen T, Tan L, Lu Z, et al. The effect of grain orientation on nanoindentation behaviour of model austenitic alloy Fe-20Cr-25Ni. Acta Mater. 2017;138:83–91.
  • Kim YC, Gwak EJ, Ahn SM, et al. Indentation size effect in nanoporous gold. Acta Mater. 2017;138:52–60.
  • Gao Y, Brodyanski A, Kopnarski M, et al. Nanoscratching of iron: a molecular dynamics study of the influence of surface orientation and scratching direction. Comput Mater Sci. 2015;103:77–89.
  • Shi J, Chen J, Sun K, et al. Water film facilitating plastic deformation of Cu thin film under different nanoindentation modes: a molecular dynamics study. Mater Chem Phys. 2017;198:177–185.
  • Fang TH, Jian SR, Chuu DS. Molecular dynamics analysis of effects of velocity and loading on the nanoindentation. Jpn J Appl Phys. 2002;41(11B):L1328.
  • Cheong WCD, Zhang LC. Molecular dynamics simulation of phase transformations in silicon monocrystals due to nanoindentation. Nanotechnology. 2000;11(3):173.
  • Zhang L, Zhao HW, Ma ZC, et al. A study on size effect of indenter in nanoindentation via molecular dynamics simulation. Key Eng Mater. 2013;562:802–808.
  • Gannepalli A, Mallapragada SK. Molecular dynamics studies of plastic deformation during silicon nanoindentation. Nanotechnology. 2001;12(3):250.
  • Maździarz M, Young TD, Dłużewski P, et al. Computer modeling of nanoindentation in the limits of a coupled molecular-statics and elastic scheme. J Comput Theor Nanosci. 2010;7(6):1172–1181.
  • Javaid F, Stukowski A, Durst K. 3D dislocation structure evolution in strontium titanate: spherical indentation experiments and MD simulations. J Am Ceram Soc. 2017;100(3):1134–1145.
  • Pi ZP, Fang QH, Jiang C, et al. Stress dependence of the dislocation core structure and loop nucleation for face-centered-cubic metals. Acta Mater. 2017;131:380–390.
  • Alhafez IA, Urbassek HM. Scratching of hcp metals: a molecular-dynamics study. Comput Mater Sci. 2016;113:187–197.
  • Ma XL, Yang W. Molecular dynamics simulation on burst and arrest of stacking faults in nanocrystalline Cu under nanoindentation. Nanotechnology. 2003;14(11):1208.
  • Fu T, Peng X, Huang C, et al. In-plane anisotropy and twin boundary effects in vanadium nitride under nanoindentation. Sci Rep. 2017;7(1):4768.
  • Huang C, Peng X, Fu T, et al. Molecular dynamics simulation of BCC Ta with coherent twin boundaries under nanoindentation. Mater Sci Eng A. 2017;700:609–616.
  • Xiang H, Li H, Fu T, et al. Formation of prismatic loops in AlN and GaN under nanoindentation. Acta Mater. 2017;138:131–139.
  • Ukwatta A, Achuthan A. A molecular dynamics (MD) simulation study to investigate the role of existing dislocations on the incipient plasticity under nanoindentation. Comput Mater Sci. 2014;91:329–338.
  • Liu Q, Deng L, Wang X. Interactions between prismatic dislocation loop and coherent twin boundary under nanoindentation investigated by molecular dynamics. Mater Sci Eng A. 2016;676:182–190.
  • Saraev D, Miller RE. Atomistic simulation of nanoindentation into copper multilayers. Modell Simul Mater Sci Eng. 2005;13(7):1089.
  • Cho MH, Kim SJ, Lim DS, et al. Atomic scale stick-slip caused by dislocation nucleation and propagation during scratching of a Cu substrate with a nanoindenter: a molecular dynamics simulation. Wear. 2005;259(7-12):1392–1399.
  • Verkhovtsev AV, Yakubovich AV, Sushko GB, et al. Molecular dynamics simulations of the nanoindentation process of titanium crystal. Comput Mater Sci. 2013;76:20–26.
  • Yedla N, Ghosh S. Nature of atomic trajectories and convective flow during plastic deformation of amorphous Cu 50 Zr 50 alloy at room temperature-classical molecular dynamics studies. Intermetallics. 2017;80:40–47.
  • Guo YB, Liang YC. Atomistic simulation of thermal effects and defect structures during nanomachining of copper. Trans Nonferrous Met Soc China. 2012;22(11):2762–2770.
  • Chen TK, Wong MS, Shun TT, et al. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering. Surf Coat Technol. 2005;200(5-6):1361–1365.
  • Wu JM, Lin SJ, Yeh JW, et al. Adhesive wear behaviour of Al x CoCrCuFeNi high-entropy alloys as a function of aluminum content. Wear. 2006;261(5-6):513–519.
  • Huang C, Zhang Y, Vilar R, et al. Dry sliding wear behaviour of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4 V substrate. Mater Des. 2012;41:338–343.
  • Lin CM, Tsai HL. Evolution of microstructure, hardness, and corrosion properties of high-entropy Al 0.5 CoCrFeNi alloy. Intermetallics. 2011;19(3):288–294.
  • Hsueh HT, Shen WJ, Tsai MH, et al. Effect of nitrogen content and substrate bias on mechanical and corrosion properties of high-entropy films (AlCrSiTiZr) 100− x N x. Surf Coat Technol. 2012;206(19-20):4106–4112.
  • Li QH, Yue TM, Guo ZN, et al. Microstructure and corrosion properties of AlCoCrFeNi high entropy alloy coatings deposited on AISI 1045 steel by the electrospark process. Metall Mater Trans A. 2013;44(4):1767–1778.
  • Zhang S, Wu CL, Zhang CH, et al. Laser surface alloying of FeCoCrAlNi high-entropy alloy on 304 stainless steel to enhance corrosion and cavitation erosion resistance. Opt Laser Technol. 2016;84:23–31.
  • Wu CL, Zhang S, Zhang CH, et al. Phase evolution and cavitation erosion-corrosion behaviour of FeCoCrAlNiTi x high entropy alloy coatings on 304 stainless steel by laser surface alloying. J Alloys Compd. 2017;698:761–770.
  • Laplanche G, Volkert UF, Eggeler G, et al. Oxidation behaviour of the CrMnFeCoNi high-entropy alloy. Oxid Met. 2016;85(5-6):629–645.
  • Ma SG, Liaw PK, Gao MC, et al. Damping behaviour of AlxCoCrFeNi high-entropy alloys by a dynamic mechanical analyzer. J Alloys Compd. 2014;604:331–339.
  • Pogrebnjak AD, Yakushchenko IV, Bagdasaryan AA, et al. Microstructure, physical and chemical properties of nanostructured (Ti–Hf–Zr–V–Nb) N coatings under different deposition conditions. Mater Chem Phys. 2014;147(3):1079–1091.
  • Yue TM, Xie H, Lin X, et al. Solidification behaviour in laser cladding of AlCoCrCuFeNi high-entropy alloy on magnesium substrates. J Alloys Compd. 2014;587:588–593.
  • Pogrebnjak AD, Bagdasaryan AAE, Yakushchenko IV, et al. The structure and properties of high-entropy alloys and nitride coatings based on them. Russ Chem Rev. 2014;83(11):1027.
  • Zhang H, He YZ, Pan Y, et al. Thermally stable laser cladded CoCrCuFeNi high-entropy alloy coating with low stacking fault energy. J Alloys Compd. 2014;600:210–214.
  • Lai CH, Tsai MH, Lin SJ, et al. Influence of substrate temperature on structure and mechanical, properties of multi-element (AlCrTaTiZr) N coatings. Surf Coat Technol. 2007;201(16-17):6993–6998.
  • Lin CM, Tsai HL, Bor HY. Effect of aging treatment on microstructure and properties of high-entropy Cu 0.5 CoCrFeNi alloy. Intermetallics. 2010;18(6):1244–1250.
  • Zhang H, Pan Y, He Y. Effects of annealing on the microstructure and properties of 6FeNiCoCrAlTiSi high-entropy alloy coating prepared by laser cladding. J Therm Spray Technol. 2011;20(5):1049–1055.
  • Liang SC, Chang ZC, Tsai DC, et al. Effects of substrate temperature on the structure and mechanical properties of (TiVCrZrHf) N coatings. Appl Surf Sci. 2011;257(17):7709–7713.
  • Chen W, Fu Z, Fang S, et al. Alloying behaviour, microstructure and mechanical properties in a FeNiCrCo 0.3 Al 0.7 high entropy alloy. Mater Des. 2013;51:854–860.
  • Yue TM, Xie H, Lin X, et al. Microstructure of laser re-melted AlCoCrCuFeNi high entropy alloy coatings produced by plasma spraying. Entropy. 2013;15(7):2833–2845.
  • Wang Z, Li J, Fang Q, et al. Investigation into nanoscratching mechanical response of AlCrCuFeNi high-entropy alloys using atomic simulations. Appl Surf Sci. 2017;416:470–481.
  • Yasuda HY, Miyamoto H, Cho K, et al. Formation of ultrafine-grained microstructure in Al 0.3 CoCrFeNi high entropy alloys with grain boundary precipitates. Mater Lett. 2017;199:120–123.
  • Nosé S. A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys. 1984;81(1):511–519.
  • Hoover WG. Canonical dynamics: equilibrium phase-space distributions. Phys Rev A. 1985;31(3):1695.
  • Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117(1):1–19.
  • Shao S, Zbib HM, Mastorakos IN, et al. Deformation mechanisms, size effects, and strain hardening in nanoscale metallic multilayers under nanoindentation. J Appl Phys. 2012;112(4):044307.
  • Salehinia I, Perez V, Bahr DF. Effect of vacancies on incipient plasticity during contact loading. Philos Mag. 2012;92(5):550–570.
  • Jhon YI, Jhon YM, Yeom GY, et al. Orientation dependence of the fracture behavior of graphene. Carbon N Y. 2014;66:619–628.
  • Stukowski A. Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Modell Simul Mater Sci Eng. 2009;18(1):015012.
  • Zhou XW, Johnson RA, Wadley HNG. Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Phys Rev B. 2004;69(14):144113.
  • Xie L, Brault P, Thomann AL, et al. Alcocrcufeni high entropy alloy cluster growth and annealing on silicon: a classical molecular dynamics simulation study. Appl Surf Sci. 2013;285:810–816.
  • Sharma A, Singh P, Johnson DD, et al. Atomistic clustering-ordering and high-strain deformation of an Al 0.1 CrCoFeNi high-entropy alloy. Sci Rep. 2016;6(31028):1–9.
  • Daw MS, Foiles SM, Baskes MI. The embedded-atom method: a review of theory and applications. Mater Sci Rep. 1993;9(7-8):251–310.
  • Xie L, Brault P, Thomann AL, et al. Molecular dynamics simulation of Al–Co–Cr–Cu–Fe–Ni high entropy alloy thin film growth. Intermetallics. 2016;68:78–86.
  • Brink T, Koch L, Albe K. Structural origins of the boson peak in metals: from high-entropy alloys to metallic glasses. Phys Rev B. 2016;94(22):224203.
  • Meraj M, Pal S. Deformation of Ni20W20Cu20Fe20Mo20 high entropy alloy for tensile followed by compressive and compressive followed by tensile loading: a molecular dynamics simulation based study. IOP Conf Ser: Mater Sci Eng. 2016;115(1):012019.
  • Mishra S, Meraj M, Pal S. Atomistic simulation study of influence of Al 2 O 3–Al interface on dislocation interaction and prismatic loop formation during nano-indentation on Al 2 O 3-coated aluminum. J Mol Model. 2018;24(7):167.
  • Li D, Wang F, Yang Z, et al. How to identify dislocations in molecular dynamics simulations? Sci China Phys Mech Astron. 2014;57(12):2177–2187.
  • Hertz H. Über die Berührung fester elastischerKörper. J Reine Angew Math. 1882;92:156–171.
  • Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7(6):1564–1583.
  • Li Y, Goyal A, Chernatynskiy A, et al. Nanoindentation of gold and gold alloys by molecular dynamics simulation. Mater Sci Eng A. 2016;651:346–357.
  • Liu CL, Fang TH, Lin JF. Atomistic simulations of hard and soft films under nanoindentation. Mater Sci Eng A. 2007;452:135–141.
  • Zhu PZ, Fang FZ. Molecular dynamics simulations of nanoindentation of monocrystalline germanium. Appl Phys A. 2012;108(2):415–421.
  • Fu T, Peng X, Chen X, et al. Molecular dynamics simulation of nanoindentation on Cu/Ni nanotwinned multilayer films using a spherical indenter. Sci Rep. 2016;6:35665.
  • Juday R, Silva EM, Huang JY, et al. Strain-related optical properties of ZnO crystals due to nanoindentation on various surface orientations. J Appl Phys. 2013;113(18):183511.
  • Remington TP, Ruestes CJ, Bringa EM, et al. Plastic deformation in nanoindentation of tantalum: A new mechanism for prismatic loop formation. Acta Mater. 2014;78:378–393.
  • Li J, Van Vliet KJ, Zhu T, et al. Atomistic mechanisms governing elastic limit and incipient plasticity in crystals. Nature. 2002;418(6895):307–310.
  • Dieter GE, Bacon DJ. Mechanical Metallurgy. New York: McGraw-Hill; 1986.
  • Cottrell AHLX. The formation of immobile dislocations during slip. London Edinburgh Dublin Philos Mag J Sci. 1952;43(341):645–647.
  • Kelchner CL, Plimpton SJ, Hamilton JC. Dislocation nucleation and defect structure during surface indentation. Phys Rev B. 1998;58(17):11085.
  • Peng P, Liao G, Shi T, et al. Molecular dynamic simulations of nanoindentation in aluminum thin film on silicon substrate. Appl Surf Sci. 2010;256(21):6284–6290.
  • Yaghoobi M, Voyiadjis GZ. Atomistic simulation of size effects in single-crystalline metals of confined volumes during nanoindentation. Comput Mater Sci. 2016;111:64–73.
  • Yaghoobi M, Voyiadjis GZ. Microstructural investigation of the hardening mechanism in fcc crystals during high rate deformations. Comput Mater Sci. 2017;138:10–15.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.