88
Views
0
CrossRef citations to date
0
Altmetric
Articles

Generation and study of a relatively large amorphous silica surface in the liquid phase

, , , &
Pages 595-602 | Received 22 May 2018, Accepted 05 Jan 2019, Published online: 24 Jan 2019

References

  • Cummings K. A history of glassforming. London: University of Pennsylvania Press; 2002.
  • Haynes MW. CRC handbook of chemistry and physics. 92nd ed. Boca Raton (Florida): CRC Press; 2011.
  • Berthier L, Biroli G. Theoretical perspective on the glass transition and amorphous materials. Rev Mod Phys. 2011;83:587–645. doi: 10.1103/RevModPhys.83.587
  • Kob W. Computer simulations of supercooled liquids and glasses. J Phys Condens Matter. 1999;11:R85–R115. doi: 10.1088/0953-8984/11/10/003
  • Clavaguerra-Mora MT. Calorimetric measurement of structural relaxation in chalcogenide and metallic glasses. J Thermal Analysis. 1989;35:1787–1793. doi: 10.1007/BF01911666
  • Cavagna A. Supercooled liquids for pedestrians. Phys Rep. 2009;476:51–124. doi: 10.1016/j.physrep.2009.03.003
  • Legrand AP. The surface properties of silica. New York (NY): Wiley; 1998.
  • Lopez T, Figueras F, Manjarrez J, et al. Catalytic nanomedicine: a new field in antitumor treatment using supported platinum nanoparticles. In vitro DNA degradation and in vivo tests with C6 animal model on Wistar rats. Eur J Med Chem. 2010;45:1982–1990. doi: 10.1016/j.ejmech.2010.01.043
  • López T, Islas E, Lemus M, et al. Nanostructured Pt(NH3)4Cl2/SiO2 for nanomedicine: catalytic degradation of DNA in cancer cells. Nano Revs. 2011;2:1–5.
  • Ibach H. Physics of surfaces and interfaces. New York (NY): Springer; 2006.
  • Garofalini SH. A molecular dynamics simulation of the vitreous silica surface. J Chem Phys. 1983;78:2069–2072. doi: 10.1063/1.444927
  • Laughlin RB, Joannopoulus JD, Murray CA, et al. Intrinsic surface phonons in porous glass. Phys Rev Lett. 1978;40:461–465. doi: 10.1103/PhysRevLett.40.461
  • Hair ML. Infrared spectroscopy in surface chemistry. New York (NY): Dekker; 1967.
  • LAMMPS (“Large-scale Atomic/Molecular Massively Parallel Simulator”) is a molecular dynamics program (free) from Sandia National Laboratories, the US Department Energy Laboratory.
  • Feuston BP, Garofalini SH. Empirical three-body potential for vitreous silica. J Chem Phys. 1988;89:5818–5824. doi: 10.1063/1.455531
  • Mischler C, Kob W, Binder K. Classical and ab-initio molecular dynamic simulation of an amorphous silica surface. Comput Phys Comm. 2002;147:222–225. doi: 10.1016/S0010-4655(02)00250-3
  • El-Sayed A-M, Walkins MB, Graseer T, et al. Hydrogen-Induced Rupture of Strained Si-O bonds in amorphous silicon dioxide. Phys Rev Lett. 2015;114:115503-1-5. doi: 10.1103/PhysRevLett.114.115503
  • Horbach J, Kob W. Static and dynamic properties of a viscous silica melt. Phys Rev B. 1999;60:3169–3181. doi: 10.1103/PhysRevB.60.3169
  • Trouiller N, Martins JL. Efficient pseudopotentials for plane-wave calculations. Phys Rev B. 1991;43:1993–2006. doi: 10.1103/PhysRevB.43.1993
  • Useŕs Guide, SIESTA 3.2, March 24, 2013. http://www.uam.es/siesta.
  • Feuston BP, Garofalini SH. Topological and bonding defects in vitreous silica surfaces. J Chem Phys. 1989;91:564–570. doi: 10.1063/1.457440
  • Sarnthein J, Pasquarello A, Car R. Model of vitreous SiO2 generated by an ab-initio molecular-dynamics quench from the melt. Phys Rev B. 1995;52:12690–12695. doi: 10.1103/PhysRevB.52.12690
  • Horbach J, Kob W, Binder K. Finite size effects in simulations of glass dynamics. Phys Rev E. 1996;54:R5897–R5900. doi: 10.1103/PhysRevE.54.R5897
  • Bakaev VA, Steele WA. On the computer simulation of a hydrophobic vitreous silica surface. J Chem Phys. 1999;111:9803–9812. doi: 10.1063/1.480317
  • Morey GW. The properties of glass. New York (NY): Reinhold; 1960, 221–293.
  • Mischler C. Ph. D., Thesis, University of Mainz, 2002.
  • Heyes DM. Molecular dynamics of ionic solid and liquid surfaces. Phys Rev B. 1984;30:2182–2201. doi: 10.1103/PhysRevB.30.2182
  • Chase MW Jr. NIST-JANAF Thermodynamical tables (journal of physics and chemical reference data monographs). 4th ed. New York (NY): American Institute of Physics; 1998.
  • Andersen HC. Molecular dynamics simulations at constant pressure and/or temperature. J Chem Phys. 1980;72:2384–2393. doi: 10.1063/1.439486
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865
  • Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B. 1988;37:785–789. doi: 10.1103/PhysRevB.37.785
  • Soler JM, Artacho E, Gale JD, et al. The SIESTA method for ab initio order-N materials simulation. J Phys Condens Matter. 2002;14:2745–2779. doi: 10.1088/0953-8984/14/11/302
  • Yin MT, Cohen ML. Theory of ab initio pseudopotentials calculations. Phys Rev B. 1982;25:7403–7412. doi: 10.1103/PhysRevB.25.7403
  • A bridging oxygen is the oxygen that two SiO2 tetrahedra share in a crystal (vitreous) structure. A nonbridging oxygen is any other oxygen that is not shared by two tetrahedra.
  • Li N, Ching W-Y. Structural and optical properties of a large random network model of amorphous SiO2 glass. J Non-Cryst Solids. 2014;383:28–32. doi: 10.1016/j.jnoncrysol.2013.04.049
  • Fonseca Guerra C, Handgraaf J-W, Baerends EJ, et al. Voronoi deformation density (VDD) charges: assessment of the Mulliken, Bader, Hirshfeld, Weinhold, and VDD methods for charge analysis. J Comput Chem. 2004;25:189–210. doi: 10.1002/jcc.10351
  • Verlet L. Computer “experiments” on classical Fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys Rev. 1967;159:98–103. doi: 10.1103/PhysRev.159.98
  • Woodcock LV, Angell CA, Cheeseman P. Molecular dynamics studies of the vitreous state: Simple ionic systems and silica. J Chem Phys. 1976;65:1565–1577. doi: 10.1063/1.433213

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.