259
Views
6
CrossRef citations to date
0
Altmetric
Articles

The thermal properties of binary structure sI clathrate hydrate from molecular dynamics simulation

& ORCID Icon
Pages 614-622 | Received 29 Jun 2018, Accepted 13 Jan 2019, Published online: 01 Feb 2019

References

  • Sloan Jr ED, Koh C. Clathrate hydrates of natural gases. Boca Raton (FL): CRC Press; 2007.
  • Bertie JE, Jacobs S. Far-infrared spectrum and x-ray diffraction of polycrystalline structure I clathrate hydrate of xenon at 4.3 K. J Chem Phys. 1982;77(6):3230–3232. doi: 10.1063/1.444198
  • Johari G, Chew H. Effect of pressure and temperature on the O─H and O─D stretching, and translational vibrations in the Raman spectrum of ice clathrate. Philo Mag B. 1984;49(3):281–294. doi: 10.1080/13642817408246514
  • Stoll RD, Bryan GM. Physical properties of sediments containing gas hydrates. J Geophys Res B: Solid Earth. 1979;84(B4):1629–1634. doi: 10.1029/JB084iB04p01629
  • Inoue R, Tanaka H, Nakanishi K. Molecular dynamics simulation study of the anomalous thermal conductivity of clathrate hydrates. J Chem Phys. 1996;104(23):9569–9577. doi: 10.1063/1.471705
  • Jiang H, Myshakin EM, Jordan KD, et al. Molecular dynamics simulations of the thermal conductivity of methane hydrate. J Phys Chem B. 2008;112(33):10207–10216. doi: 10.1021/jp802942v
  • English NJ, John ST, Carey DJ. Mechanisms for thermal conduction in various polymorphs of methane hydrate. Phys Rev B. 2009;80(13):134306. doi: 10.1103/PhysRevB.80.134306
  • Tse JS, Klein ML, McDonald IR. Computer simulation studies of the structure I clathrate hydrates of methane, tetrafluoromethane, cyclopropane, and ethylene oxide. J Chem Phys. 1984;81(12):6146–6153. doi: 10.1063/1.447569
  • Tse J. Thermal expansion of the clathrate hydrates of ethylene oxide and tetrahydrofuran. J Phys Colloq. 1987;48(C1):C1–543. -C1-549. doi: 10.1051/jphyscol:1987174
  • Tse JS, McKinnon WR, Marchi M. Thermal expansion of structure I ethylene oxide hydrate. J Phys Chem. 1987;91(15):4188–4193. doi: 10.1021/j100299a047
  • Tse JS. Thermal expansion of structure-H clathrate hydrates. J Inclusion Phenom Mol Recognit Chem. 1990;8(1–2):25–32. doi: 10.1007/BF01131285
  • Marchi M, Mountain RD. Thermal expansion of a structure II hydrate using constant pressure molecular dynamics. J Chem Phys. 1987;86(11):6454–6455. doi: 10.1063/1.452435
  • Hester K, Huo Z, Ballard A, et al. Thermal expansivity for sI and sII clathrate hydrates. J Phys Chem B. 2007;111(30):8830–8835. doi: 10.1021/jp0715880
  • Klapproth A, Goreshnik E, Staykova D, et al. Structural studies of gas hydrates. Can J Phys. 2003;81:503–518. doi: 10.1139/p03-024
  • Manakov AY, Likhacheva AY, Potemkin VA, et al. Compressibility of gas hydrates. ChemPhysChem. 2011;12:2476–2484. doi: 10.1002/cphc.201100126
  • Belosludov VR, Inerbaev TM, Subbotin OS, et al. Thermal expansion and lattice distortion of clathrate hydrates of cubic structures I and II. J Supramol Chem. 2002;2(4):453–458. doi: 10.1016/S1472-7862(03)00072-8
  • Alavi S, Ripmeester J, Klug D. Molecular-dynamics simulations of binary structure II hydrogen and tetrahydrofurane clathrates. J Chem Phys. 2006;124(1):014704–014704. doi: 10.1063/1.2141506
  • Ning F, Glavatskiy K, Ji Z, et al. Compressibility, thermal expansion coefficient and heat capacity of CH4 and CO2 hydrate mixtures using molecular dynamics simulations. Phys Chem Chem Phys. 2015;17(4):2869–2883. doi: 10.1039/C4CP04212C
  • Costandy J, Michalis VK, Tsimpanogiannis IN, et al. Molecular dynamics simulations of pure methane and carbon dioxide hydrates: lattice constants and derivative properties. Mol Phys. 2016;114(18):2672–2687. doi: 10.1080/00268976.2016.1241442
  • Murayama K, Takeya S, Alavi S, et al. Anisotropic lattice expansion of structure H clathrate hydrates induced by help guest: experiments and molecular dynamics simulations. The J Phys Chem C. 2014;118(37):21323–21330. doi: 10.1021/jp5058786
  • Chazallon B, Kuhs WF. In situ structural properties of N2-, O2-, and air-clathrates by neutron diffraction. J Chem Phys. 2002;117(1):308–320. doi: 10.1063/1.1480861
  • Chakoumakos B, Rawn C, Rondinone A, et al. Temperature dependence of polyhedral cage volumes in clathrate hydrates. Can J Phys. 2003;81(1–2):183–189. doi: 10.1139/p02-141
  • Docherty H, Galindo A, Vega C, et al. A potential model for methane in water describing correctly the solubility of the gas and the properties of the methane hydrate. J Chem Phys. 2006;125(7):074510. doi: 10.1063/1.2335450
  • Alavi S, Susilo R, Ripmeester JA. Linking microscopic guest properties to macroscopic observables in clathrate hydrates: guest-host hydrogen bonding. J Chem Phys. 2009;130(17):174501. doi: 10.1063/1.3124187
  • Yamamuro O, Handa Y, Oguni M, et al. Heat capacity and glass transition of ethylene oxide clathrate hydrate. J Incl Phenom Macrocycl Chem. 1990;8(1):45–58. doi: 10.1007/BF01131287
  • Yamamuro O, Oguni M, Matsuo T, et al. Calorimetric study on pure and KOH-doped argon clathrate hydrates. J Incl Phenom Macrocycl Chem. 1988;6(3):307–318. doi: 10.1007/BF00682143
  • Yamamuro O, Oguni M, Matsuo T, et al. Heat capacity and phase transition of tetrahydrofuran clathrate hydrate. Solid State Commun. 1987;62(4):289–292. doi: 10.1016/0038-1098(87)90814-3
  • Comper J, Quesnel A, Fyfe CA, et al. Experimental study of the structure I clathrate hydrate of trimethylene oxide by adiabatic calorimetry. Can J Chem. 1983;61(1):92–96. doi: 10.1139/v83-016
  • Mohammadi-Manesh H, Ghafari H, Alavi S. Molecular dynamics study of guest–host hydrogen bonding in ethylene oxide, trimethylene oxide, and formaldehyde structure I clathrate hydrates. J Phys Chem C. 2017;121(16):8832–8840. doi: 10.1021/acs.jpcc.7b00218
  • Mak TC, McMullan RK. Polyhedral clathrate hydrates. X. structure of the double hydrate of tetrahydrofuran and hydrogen sulfide. J Chem Phys. 1965;42(8):2732–2737. doi: 10.1063/1.1703229
  • Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 09, Revision A.02. Wallingford: Gaussian Inc; 2009.
  • Breneman CM, Wiberg KB. Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J Comput Chem. 1990;11(3):361–373. doi: 10.1002/jcc.540110311
  • Cornell WD, Cieplak P, Bayly CI, et al. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc. 1995;117(19):5179–5197. doi: 10.1021/ja00124a002
  • Murad S, Gubbins KE. In Computer Modeling of Matter (Ed: Lykos P), American Chemical Society, Washington, DC, 1978. P. 62.
  • Jorgensen WL, Madura JD, Swenson CJ. Optimized intermolecular potential functions for liquid hydrocarbons. J Am Chem Soc. 1984;106(22):6638–6646. doi: 10.1021/ja00334a030
  • Abascal J, Sanz E, Fernández RG, et al. A potential model for the study of ices and amorphous water: TIP4P/Ice. J Chem Phys. 2005;122(23):234511. doi: 10.1063/1.1931662
  • Smith W, Forester T, Todorov I, et al. The DL POLY 2 User Manual, vol. 2.16. CCLRC Daresbury Laboratory, Daresbury, Warrington, UK. 2006.
  • Nosé S. A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys. 1984;81(1):511–519. doi: 10.1063/1.447334
  • Hoover WG. Canonical dynamics: equilibrium phase-space distributions. Phys Rev A. 1985;31(3):1695–1697. doi: 10.1103/PhysRevA.31.1695
  • Melchionna S, Ciccotti G, Lee Holian B. Hoover NPT dynamics for systems varying in shape and size. Mol Phys. 1993;78(3):533–544. doi: 10.1080/00268979300100371
  • Helgerud M, Waite WF, Kirby S, et al. Elastic wave speeds and moduli in polycrystalline ice Ih. sI methane hydrate, and sII methane-ethane hydrate. J Geophys Res: Solid Earth. 2009;114(B02212):1–11.
  • Cheng W, Zhou H, Ren S. Molecular dynamics study on the structure I xenon hydrate. Chin Sci Bull. 2005;50(8):822–825. doi: 10.1007/BF03183685
  • Arismendi-Arrieta DJ, Vítek A, Prosmiti R. High pressure structural transitions in Kr clathrate-like clusters. J Phys Chem C. 2016;120(45):26093–26102. doi: 10.1021/acs.jpcc.6b07584
  • Handa Y, Yamamuro O, Oguni M, et al. Low-temperature heat capacities of xenon and krypton clathrate hydrates. J Chem Thermodyn. 1989;21(12):1249–1262. doi: 10.1016/0021-9614(89)90114-6
  • Leaist D, Murray J, Post M, et al. Enthalpies of decomposition and heat capacities of ethylene oxide and tetrahydrofuran hydrates. J Phys Chem. 1982;86(21):4175–4178. doi: 10.1021/j100218a017
  • Nakagawa R. editor. Dissociation and specific heats of gas hydrates under submarine and sublacustrine environments. Proceedings of the 6th International Conference on Gas Hydrates (ICGH2008), Vancouver, BC, Canada, 6–10 July; 2008.
  • Handa Y. Compositions, enthalpies of dissociation, and heat capacities in the range 85 to 270 K for clathrate hydrates of methane, ethane, and propane, and enthalpy of dissociation of isobutane hydrate, as determined by a heat-flow calorimeter. J Chem Thermodyn. 1986;18(10):915–921. doi: 10.1016/0021-9614(86)90149-7
  • English NJ. Effect of electrostatics techniques on the estimation of thermal conductivity via equilibrium molecular dynamics simulation: application to methane hydrate. Mol Phys. 2008;106(15):1887–1898. doi: 10.1080/00268970802360348

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.