247
Views
0
CrossRef citations to date
0
Altmetric
Articles

Dissipative particle dynamics: dissipative forces from atomistic simulation

ORCID Icon & ORCID Icon
Pages 248-256 | Received 18 Apr 2018, Accepted 28 Jan 2019, Published online: 18 Feb 2019

References

  • Berne BJ, Pecora R. Dynamic light scattering: with applications to chemistry, biology, and physics. New York (NY): Wiley; 1976.
  • Kamerlin SC, Vicatos S, Dryga A, et al. Coarse-grained (multiscale) simulations in studies of biophysical and chemical systems. Annu Rev Phys Chem. 2011;62:41–64. doi: 10.1146/annurev-physchem-032210-103335
  • Allen MP, Tildesley DJ. Computer simulation of liquids. Oxford: Oxford University Press; 2017.
  • Zwanzig R. Nonequilibrium statistical mechanics. Oxford: Oxford University Press; 2001.
  • Zwanzig R. Ensemble method in the theory of irreversibility. J Chem Phys. 1960;33:1338–1341. doi: 10.1063/1.1731409
  • Mori H. Transport, collective motion, and Brownian motion. Prog Theor Phys. 1965;33:423–455. doi: 10.1143/PTP.33.423
  • Hijón C, Español P, Vanden-Eijnden E, et al. Mori–Zwanzig formalism as a practical computational tool. Faraday Discuss. 2010;144:301–322. doi: 10.1039/B902479B
  • Cubero D, Yaliraki SN. Formal derivation of dissipative particle dynamics from first principles. Phys Rev E. 2005;72:032101. doi: 10.1103/PhysRevE.72.032101
  • Voth GA, editor. Coarse-graining of condensed phase and biomolecular systems. Boca Raton (FL): CRC press; 2008.
  • Kondov I, Sutmann G, editors. Multiscale modelling methods for applications in materials science. Vol. 19 of IAS Series. Jülich: Forschungszentrum Jülich; 2013.
  • Akkermans RLC, Briels WJ. Coarse-grained dynamics of one chain in a polymer melt. J Chem Phys. 2000;113:6409–6422. doi: 10.1063/1.1308513
  • Akkermans RLC, Briels WJ. A structure-based coarse-grained model for polymer melts. J Chem Phys. 2001;114:1020–1031. doi: 10.1063/1.1330744
  • Akkermans RLC, Briels WJ. Coarse-grained interactions in polymer melts: a variational approach. J Chem Phys. 2001;115:6210–6219. doi: 10.1063/1.1396677
  • Briels WJ, Akkermans RLC. Representation of coarse-grained potentials for polymer simulations. Mol Simul. 2002;28:145–152. doi: 10.1080/08927020211980
  • Allen EC, Rutledge GC. A novel algorithm for creating coarse-grained, density dependent implicit solvent models. J Chem Phys. 2008;128:154115. doi: 10.1063/1.2899729
  • Karplus M. Development of multiscale models for complex chemical systems: from H+H2 to biomolecules (Nobel lecture). Angew Chem Int Ed. 2014;53:9992–10005. doi: 10.1002/anie.201403924
  • Levitt M. Birth and future of multiscale modeling for macromolecular systems (Nobel lecture). Ang Chemie Int Ed. 2014;53:10006–10018. doi: 10.1002/anie.201403691
  • Warshel A. Multiscale modeling of biological functions: from enzymes to molecular machines (Nobel lecture). Ang Chem Int Ed. 2014;53:10020–10031. doi: 10.1002/anie.201403689
  • Marrink SJ, Risselada HJ, Yefimov S, et al. The MARTINI force field: coarse grained model for biomol simuls. J Phys Chem B. 2007;111:7812–7824. doi: 10.1021/jp071097f
  • Liwo A, Czaplewski C, Pillardy J, et al. Cumulant-based expressions for the multibody terms for the correlation between local and electrostatic interactions in the united-residue force field. J Chem Phys. 2001;115:2323–2347. doi: 10.1063/1.1383989
  • Liwo A, Baranowski M, Czaplewski C, et al. A unified coarse-grained model of biological macromolecules based on mean-field multipole–multipole interactions. J Mol Model. 2014;20:2306. doi: 10.1007/s00894-014-2306-5
  • Darré L, Machado MR, Brandner AF, et al. SIRAH: a structurally unbiased coarse-grained force field for proteins with aqueous solvation and long-range electrostatics. J Chem Theory Comput. 2015;11:723–739. doi: 10.1021/ct5007746
  • Ercolessi F, Adams JB. Interatomic potentials from 1st-principles calculations – the force-matching method. Europhys Lett. 1994;26:583–588. doi: 10.1209/0295-5075/26/8/005
  • McGreevy RL, Pusztai L. Reverse Monte Carlo simulation: a new technique for the determination of disordered structures. Mol Simul. 1988;1:359–367. doi: 10.1080/08927028808080958
  • McGreevy RL. Reverse Monte Carlo modelling. J Phys Condens Matter. 2001;13:R877–R913. doi: 10.1088/0953-8984/13/46/201
  • Shell MS. The relative entropy is fundamental to multiscale and inverse thermodynamic problems. J Chem Phys. 2008;129:144108. doi: 10.1063/1.2992060
  • Lopez CF, Nielsen SO, Moore PB, et al. Self-assembly of a phospholipid Langmuir monolayer using coarse-grained molecular dynamics simulations. J Phys Condens Matter. 2002;14:9431. doi: 10.1088/0953-8984/14/40/327
  • Qian HJ, Liew CC, Müller-Plathe F. Effective control of the transport coefficients of a coarse-grained liquid and polymer models using the dissipative particle dynamics and Lowe–Andersen equations of motion. Phys Chem Chem Phys. 2009;11:1962–1969. doi: 10.1039/b817584e
  • Fu CC, Kulkarni PM, Shell MS, et al. A test of systematic coarse-graining of molecular dynamics simulations: transport properties. J Chem Phys. 2013;139:094107.
  • Dünweg B. Molecular dynamics algorithms and hydrodynamic screening. J Chem Phys. 1993;99:6977–6982. doi: 10.1063/1.465444
  • Liu MB, Liu GR. Particle methods for multi-scale and multi-physics. Singapore: World Scientific; 2016.
  • Hoogerbrugge PJ, Koelman JMVA. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys Lett. 1992;19:155–160. doi: 10.1209/0295-5075/19/3/001
  • Español P, Warren P. Statistical mechanics of dissipative particle dynamics. Europhys Lett. 1995;30:191–196. doi: 10.1209/0295-5075/30/4/001
  • Groot RD, Warren PB. Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J Chem Phys. 1997;107:4423–4435. doi: 10.1063/1.474784
  • Español P. Hydrodynamics from dissipative particle dynamics. Phys Rev E. 1995;52:1734–1742. doi: 10.1103/PhysRevE.52.1734
  • Weeks JD, Chandler D, Andersen HC. Role of repulsive forces in determining the equilibrium structure of simple liquids. J Chem Phys. 1971;54:5237–5247. doi: 10.1063/1.1674820
  • Español P, Warren PB. Perspective: dissipative particle dynamics. J Chem Phys. 2017;146:150901. doi: 10.1063/1.4979514
  • Eriksson A, Jacobi MN, Nystrom J, et al. Using force covariance to derive effective stochastic interactions in dissipative particle dynamics. Phys Rev E. 2008;77:016707. doi: 10.1103/PhysRevE.77.016707
  • Eriksson A, Jacobi MN, Nystrom J, et al. On the microscopic foundation of dissipative particle dynamics. Europhys Lett. 2009;86:44001. doi: 10.1209/0295-5075/86/44001
  • Eriksson A, Jacobi MN, Nystrom J, et al. A method for estimating the interactions in dissipative particle dynamics from particle trajectories. J Phys Condens Matter. 2009;21:095401. doi: 10.1088/0953-8984/21/9/095401
  • Español P. Dissipative particle dynamics. In: Grotendorst J, Sutmann G, Gompper G, et al., editors. Hierarchical methods for dynamics in complex molecular systems. Vol. 10 of IAS series; Forschungszentrum Jülich GmbH; 2012. p. 445–468. Available from: http://www.fz-juelich.de/ias/jsc/EN/Expertise/Workshops/Conferences/WSHD-2012/Publications/Publications.html.
  • Evans GT. Dissipative particle dynamics: transport coefficients. J Chem Phys. 1999;110:1338–1342. doi: 10.1063/1.478010
  • Bock H, Gubbins KE, Klapp SHL. Coarse graining of nonbonded degrees of freedom. Phys Rev Lett. 2007;98:267801. doi: 10.1103/PhysRevLett.98.267801
  • Marsh CA, Backx G, Ernst MH. Static and dynamic properties of dissipative particle dynamics. Phys Rev E. 1997;56:1676–1691. doi: 10.1103/PhysRevE.56.1676
  • Zwanzig R. Elementary excitations in classical liquids. Phys Rev. 1967;156:190–195. doi: 10.1103/PhysRev.156.190
  • Koelman JMVA, Hoogerbrugge PJ. Dynamic simulations of hard-sphere suspensions under steady shear. Europhys Lett. 1993;21:363–368. doi: 10.1209/0295-5075/21/3/018
  • Tabor D. Gases, liquids and solids: and other states of matter. Cambridge: Cambridge University Press; 1991.
  • Henderson RL. A uniqueness theorem for fluid pair correlation functions. Phys Lett A. 1974;49:197–198. doi: 10.1016/0375-9601(74)90847-0
  • Louis AA. Beware of density dependent pair potentials. J Phys: Condens Matter. 2002;14:9187–9206.
  • Todorov IT, Smith W, Trachenko K, et al. DL_POLY_3: new dimensions in molecular dynamics simulations via massive parallelism. J Mater Chem. 2006;16:1911–1918. doi: 10.1039/b517931a
  • Ivlev BI. Hydrodynamic fluctuation forces. J Phys: Cond Matt. 2002;14:4829–4842.
  • Seaton MA, Anderson RL, Metz S, et al. DL_MESO: highly scalable mesoscale simulations. Mol Simul. 2013;39:796–821. doi: 10.1080/08927022.2013.772297
  • Goga N, Rzepiela AJ, de Vries AH, et al. Efficient algorithms for Langevin and dpd dynamics. J Chem Theory Comput. 2012;8:3637–3649. doi: 10.1021/ct3000876
  • Vattulainen I, Karttunen M, Besold G, et al. Integration schemes for dissipative particle dynamics simulations: from softly interacting systems towards hybrid models. J Chem Phys. 2002;116:3967–3979. doi: 10.1063/1.1450554
  • Dib RFA, Ould-Kaddour F, Levesque D. Long-time behavior of the velocity autocorrelation function at low densities and near the critical point of simple fluids. Phys Rev E. 2006;74:011202. doi: 10.1103/PhysRevE.74.011202

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.