224
Views
8
CrossRef citations to date
0
Altmetric
Articles

Energetics, kinetics and dynamics of self-interstitial clusters in bcc tungsten

ORCID Icon, , &
Pages 666-671 | Received 12 Nov 2018, Accepted 29 Jan 2019, Published online: 14 Feb 2019

References

  • Duffy DM. Fusion power: a challenge for materials science. Philos Trans Math Phys Eng Sci. 2010;368(1923):3315–3328. doi: 10.1098/rsta.2010.0060
  • Chen NJ, Niu LL, Zhang Y, et al. Energetics of vacancy segregation to 100 symmetric tilt grain boundaries in bcc tungsten. Sci Rep. 2016;6:12. doi: 10.1038/s41598-016-0010-7
  • Kurishita H, Arakawa H, Matsuo S, et al. Development of nanostructured tungsten based materials resistant to recrystallization and/or radiation induced embrittlement. Mater Trans. 2013;54(4):456–465. doi: 10.2320/matertrans.MG201209
  • Shimada M, Cao G, Otsuka T, et al. Irradiation effect on deuterium behaviour in low-dose HFIR neutron-irradiated tungsten. Nucl Fusion. 2015;55(1):13008–13016. doi: 10.1088/0029-5515/55/1/013008
  • Shimada M, Hara M, Otsuka T, et al. Defect annealing and thermal desorption of deuterium in low dose HFIR neutron-irradiated tungsten. J Nucl Mater. 2014;463:1005–1008. doi: 10.1016/j.jnucmat.2014.10.054
  • Zhu XL, Zhang Y, Cheng L, et al. Deuterium occupation of vacancy-type defects in argon-damaged tungsten exposed to high flux and low energy deuterium plasma. Nucl Fusion. 2016;56(3):036010. doi: 10.1088/0029-5515/56/3/036010
  • Li X, Duan G, Xu Y, et al. Annihilating vacancies via dynamic reflection and emission of interstitials in nano-crystal tungsten. Nucl Fusion. 2017;57(11), 116055.
  • You YW, Kong XS, Wu X, et al. Bubble growth from clustered hydrogen and helium atoms in tungsten under a fusion environment. Nucl Fusion. 2017;57(1):016006. doi: 10.1088/0029-5515/57/1/016006
  • Li YH, Zhou HB, Jin S, et al. Behaviors of transmutation elements Re and Os and their effects on energetics and clustering of vacancy and self-interstitial atoms in W. Nucl Fusion. 2017;57(4):046006. doi: 10.1088/1741-4326/aa5893
  • Li XY, Xu YC, Duan GH, et al. On the possibility of universal interstitial emission induced annihilation in metallic nanostructures. J Nucl Mater. 2018;500:199–212. doi: 10.1016/j.jnucmat.2017.12.038
  • He WH, Gao X, Gao N, et al. Effects of grain boundary characteristics on its capability to trap point defects in tungsten. Chinese Phys Lett. 2018;35(2), 026101.
  • Yi X, Jenkins ML, Briceno M, et al. In situ study of self-ion irradiation damage in W and W–5Re at 500°C. Philos Mag. 2012;93(14):1715–1738. doi: 10.1080/14786435.2012.754110
  • Sand AE, Nordlund K, Dudarev SL. Radiation damage production in massive cascades initiated by fusion neutrons in tungsten. J Nucl Mater. 2014;455(1–3):207–211. doi: 10.1016/j.jnucmat.2014.06.007
  • Sefta F, Hammond KD, Juslin N, et al. Tungsten surface evolution by helium bubble nucleation, growth and rupture. Nucl Fusion. 2013;53(7):073015. doi: 10.1088/0029-5515/53/7/073015
  • Derlet PM, Nguyen-Manh D, Dudarev SL. Multiscale modeling of crowdion and vacancy defects in body-centered-cubic transition metals. Phys Rev B. 2007;76(5):054107. doi: 10.1103/PhysRevB.76.054107
  • Zhou WH, Zhang CG, Li YG, et al. Transport, dissociation and rotation of small self-interstitial atom clusters in tungsten. J Nucl Mater. 2014;453(1–3):202–209. doi: 10.1016/j.jnucmat.2014.06.066
  • Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117(1):1–19. doi: 10.1006/jcph.1995.1039
  • Stukowski A. Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Model Simul Mater Sc. 2010;18(1):015012. doi: 10.1088/0965-0393/18/1/015012
  • Juslin N, Wirth BD. Interatomic potentials for simulation of He bubble formation in W. J Nucl Mater. 2013;432(1–3):61–66. doi: 10.1016/j.jnucmat.2012.07.023
  • Ackland GJ, Thetford R. An improved N-body semi-empirical model for body-centred cubic transition metals. Philos Mag A. 1987;56(1):15–30. doi: 10.1080/01418618708204464
  • Nosé S. A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys. 1984;81(1):511–519. doi: 10.1063/1.447334
  • Hoover WG. Canonical dynamics: equilibrium phase-space distributions. Phys Rev A. 1985;31(3):1695–1697. doi: 10.1103/PhysRevA.31.1695
  • Martyna GJ, Klein ML, Tuckerman M. Nosé–Hoover chains: the canonical ensemble via continuous dynamics. J Chem Phys. 1992;97(4):2635–2643. doi: 10.1063/1.463940
  • Voter AF, Francesco Montalenti A, Germann TC. Extending the time scale in atomistic simulation of materials. Ann Rev Mater Res. 2002;32(32):321–346. doi: 10.1146/annurev.matsci.32.112601.141541
  • Henkelman G, Uberuaga BP, Jónsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys. 2000;113(22):9901–9904. doi: 10.1063/1.1329672
  • Faney T, Wirth BD. Spatially dependent cluster dynamics modeling of microstructure evolution in low energy helium irradiated tungsten. Model Simul Mater Sci. 2014;22(6):065010. doi: 10.1088/0965-0393/22/6/065010
  • Faney T, Krasheninnikov SI, Wirth BD. Spatially dependent cluster dynamics model of He plasma surface interaction in tungsten for fusion relevant conditions. Nucl Fusion. 2015;55(1):013014. doi: 10.1088/0029-5515/55/1/013014

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.