434
Views
7
CrossRef citations to date
0
Altmetric
Articles

The role of chromium and nickel on the thermal and mechanical properties of FeNiCr austenitic stainless steels under high pressure and temperature: a molecular dynamics study

, , ORCID Icon, &
Pages 672-684 | Received 06 Sep 2018, Accepted 27 Jan 2019, Published online: 15 Feb 2019

References

  • McGuire MF. Stainless steels for design engineers. Materials Park (OH): ASM International; 2008.
  • Kaladhar M, Subbaiah KV, Rao CHS. Machining of austenitic stainless steels - a review. Int J Mach Mach Mater. 2012;12:178.
  • Ma BM. Nuclear reactor materials and applications. New York (NY): Van Nostrand Reinhold Co; 1983.
  • Roberts JTA. Structural materials in nuclear power systems. New York (NY): Plenum Press; 1981.
  • Washko SD. Metals handbook: properties and selection: irons, steels, and high-performance alloys. 10th ed., Vol. 1. Materials Park (OH): ASM International; 1990. p. 841–907.
  • Marshall P. Austenitic stainless steels: microstructure and mechanical properties. London: Elsevier Applied Science; 1984.
  • Ryoo D, Kang N KC. Effect of Ni content on the tensile properties and strain-induced martensite transformation for 304 stainless steel. Mater Sci Eng A. 2011;528:2277–2281. doi: 10.1016/j.msea.2010.12.022
  • Srivastava P, Venkatraman K. A molecular dynamics simulation of stress-strain behavior of elastomers. Structures, Structural Dynamics and Materials Conference. Reston (VA): American Institute of Aeronautics and Astronautics; 2008.
  • Teklu A, Ledbetter H, Kim S, et al. Single-crystal elastic constants of Fe-15Ni-15Cr alloy. Metall Mater Trans A. 2004;35:3149–3154. doi: 10.1007/s11661-004-0059-y
  • Church BR, Sanders TH, Speyer RF, et al. Thermal expansion matching and oxidation resistance of Fe–Ni–Cr interconnect alloys. Mater Sci Eng A. 2007;452–453:334–340. doi: 10.1016/j.msea.2006.10.149
  • Mao WL, Campbell AJ, Heinz DL, et al. Phase relations of Fe–Ni alloys at high pressure and temperature. Phys Earth Planet Inter. 2006;155:146–151. doi: 10.1016/j.pepi.2005.11.002
  • He Q, Liu T, Xie JL. Different Cr contents in Nanostructured Fe-Ni-Cr alloys prepared by mechanical alloying. Key Eng Mater. 2012;531–532:437–441. doi: 10.4028/www.scientific.net/KEM.531-532.437
  • Bonny G, Terentyev D, Pasianot RC, et al. Interatomic potential to study plasticity in stainless steels: the FeNiCr model alloy. Modell Simul Mater Sci Eng. 2011;19:085008. doi: 10.1088/0965-0393/19/8/085008
  • Bonny G, Castin N, Terentyev D. Interatomic potential for studying ageing under irradiation in stainless steels: the FeNiCr model alloy. Modell Simul Mater Sci Eng. 2013;21:085004. doi: 10.1088/0965-0393/21/8/085004
  • Mastorakos IN, Zbib HM. A multiscale approach to study the effect of chromium and nickel concentration in the hardening of iron alloys. J Nucl Mater. 2014;449:101–110. doi: 10.1016/j.jnucmat.2014.03.005
  • Luo F, Chen X, Cai L, et al. Thermoelastic properties of nickel from molecular dynamic simulations. J At Mol Sci. 2011;2:10–19.
  • Wang W-D, Yi C-L, Fan K-Q Molecular dynamics study on temperature and strain rate dependences of mechanical tensile properties of ultrathin nickel nanowires. Trans Nonferrous Met Soc China. 2013;23:3353–3361. doi: 10.1016/S1003-6326(13)62875-7
  • Grujicic M, Zhou XW. Analysis of Fe-Ni-Cr-N austenite using the embedded-atom method. Calphad. 1993;17:383–413. doi: 10.1016/0364-5916(93)90024-6
  • Grujicic M, Zhou XW. Atomistic simulation of thermally activated glide of dislocations in Fe-Ni-Cr-N austenite. Mater Sci Eng A. 1995;190:87–98. doi: 10.1016/0921-5093(94)09618-7
  • Grujicic M. Atomistic simulation of dislocation core structure and dynamics in Fe–Ni–Cr–N austenite. J Mater Sci. 1997;32:1749–1757. doi: 10.1023/A:1018528117413
  • Rassoulinejad-Mousavi SM, Mao Y, Zhang Y. Evaluation of copper, aluminum, and nickel interatomic potentials on predicting the elastic properties. J Appl Phys. 2016;119:244304. doi: 10.1063/1.4953676
  • Davoodi J, Katouzi F. High pressure molecular dynamics simulation of Au-x%Ni alloys. J Appl Phys. 2014;115:094905. doi: 10.1063/1.4866596
  • Hui C, Zhiyuan R, Wenke C, et al. Deformation mechanisms in nanotwinned γ-TiAl by molecular dynamics simulation. Mol Simul. 2018;44:1489–1500. doi: 10.1080/08927022.2018.1496248
  • Zhang B, Zhou L, Sun Y, et al. Molecular dynamics simulation of crack growth in pure titanium under uniaxial tension. Mol Simul. 2018;44:1252–1260. doi: 10.1080/08927022.2018.1485150
  • Movahedi-Rad A, Alizadeh R. Simulating grain boundary energy using molecular dynamics. J Mod Phys. 2014;05:627–632. doi: 10.4236/jmp.2014.58073
  • Li J, Fang Q, Liu B, et al. Twinning-governed plastic deformation in a thin film of body-centred cubic nanocrystalline ternary alloys at low temperature. J Alloys Compd. 2017;727:69–79. doi: 10.1016/j.jallcom.2017.08.115
  • Li J, Fang Q, Liu B, et al. Mechanical behaviors of AlCrFeCuNi high-entropy alloys under uniaxial tension via molecular dynamics simulation. RSC Adv. 2016;6:76409–76419. doi: 10.1039/C6RA16503F
  • Rajabpour A, Seidabadi L, Soltanpour M. Calculating the bulk modulus of iron and steel using equilibrium molecular dynamics simulation. Procedia Mater Sci. 2015;11:391–396. doi: 10.1016/j.mspro.2015.11.005
  • Fan J, Li J, Huang Z, et al. Grain size effects on indentation-induced plastic deformation and amorphization process of polycrystalline silicon. Comput Mater Sci. 2018;144:113–119. doi: 10.1016/j.commatsci.2017.12.017
  • James JD, Spittle JA, Brown SGR, et al. A review of measurement techniques for the thermal expansion coefficient of metals and alloys at elevated temperatures. Meas Sci Technol. 2001;12:R1–R15. doi: 10.1088/0957-0233/12/3/201
  • Zhang Y, Maginn EJ. A comparison of methods for melting point calculation using molecular dynamics simulations. J Chem Phys. 2012;136:144116. doi: 10.1063/1.3702587
  • Murty KL, Charit I. An introduction to nuclear materials: fundamentals and applications. Weinheim: Wiley-VCH; 2013.
  • Chamati H, Papanicolaou NI, Mishin Y, et al. Embedded-atom potential for Fe and its application to self-diffusion on Fe(1 0 0). Surf Sci. 2006;600:1793–1803. doi: 10.1016/j.susc.2006.02.010
  • Mendelev MI, Kramer MJ, Hao SG, et al. Development of interatomic potentials appropriate for simulation of liquid and glass properties of NiZr2 alloy. Philos Mag. 2012;92:4454–4469. doi: 10.1080/14786435.2012.712220
  • Stukowski A, Sadigh B, Erhart P, et al. Efficient implementation of the concentration-dependent embedded atom method for molecular-dynamics and Monte-Carlo simulations. Modell Simul Mater Sci Eng. 2009;17:075005. doi: 10.1088/0965-0393/17/7/075005
  • Bonny G, Pasianot RC, Malerba L. Fe–Ni many-body potential for metallurgical applications. Modell Simul Mater Sci Eng. 2009;17:025010. doi: 10.1088/0965-0393/17/2/025010
  • Simmons G, Wang H. Single crystal elastic constants and calculated aggregate properties. Cambridge (MA): MIT Press; 1977.
  • Smith RW, Was GS. Application of molecular dynamics to the study of hydrogen embrittlement in Ni-Cr-Fe alloys. Phys Rev B. 1989;40:10322–10336. doi: 10.1103/PhysRevB.40.10322
  • Silk MG, Lidington BH, Hammond GF. A time domain approach to crack location and sizing in austenitic welds. Br J Non-Destr Test. 1980;22(2):55–61.
  • Ledbetter HM. Monocrystal elastic constants in the ultrasonic study of welds. Ultrasonics. 1985;23:9–13. doi: 10.1016/0041-624X(85)90005-8
  • Ledbetter HM. Predicted single-crystal elastic constants of stainless-steel 316. Br J Non-Destr Test. 1981;23(6):286–287.
  • Kim S, Ledbetter H, Li YY. Elastic constants of four Fe-Cr-Ni-Mn alloys. J Mater Sci. 1994;29:5462–5466. doi: 10.1007/BF01171562
  • Murray GT. Handbook of materials selection for engineering applications. New York (NY): Marcel Dekker; 1997.
  • Lu X-G, Selleby M, Sundman B. Assessments of molar volume and thermal expansion for selected bcc, fcc and hcp metallic elements. Calphad. 2005;29:68–89. doi: 10.1016/j.calphad.2005.05.001
  • Bonny G, Pasianot RC, Terentyev D, et al. Iron chromium potential to model high-chromium ferritic alloys. Philos Mag. 2011;91:1724–1746. doi: 10.1080/14786435.2010.545780
  • Mendelev MI, Han S, Srolovitz DJ, et al. Development of new interatomic potentials appropriate for crystalline and liquid iron. Philos Mag. 2003;83:3977–3994. doi: 10.1080/14786430310001613264
  • Pártay LB. On the performance of interatomic potential models of iron: comparison of the phase diagrams. Comput Mater Sci. 2018;149:153–157. doi: 10.1016/j.commatsci.2018.03.026
  • Xie L, Brault P, Thomann A-L, et al. Alcocrcufeni high entropy alloy cluster growth and annealing on silicon: a classical molecular dynamics simulation study. Appl Surf Sci. 2013;285:810–816. doi: 10.1016/j.apsusc.2013.08.133
  • Kong LT, Li JF, Shi QW, et al. Dynamical stability of iron under high-temperature and high-pressure conditions. EPL Europhys Lett. 2012;97:56004. doi: 10.1209/0295-5075/97/56004
  • Nöhring WG, Curtin WA. Thermodynamic properties of average-atom interatomic potentials for alloys. Modell Simul Mater Sci Eng. 2016;24:045017. doi: 10.1088/0965-0393/24/4/045017

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.