112
Views
2
CrossRef citations to date
0
Altmetric
Articles

Effect of Zn ion on the structure and electronic states of Aβ nonamer: molecular dynamics and ab initio molecular orbital calculations

, , , , , , & show all
Pages 706-715 | Received 09 Nov 2018, Accepted 25 Dec 2018, Published online: 21 Feb 2019

References

  • Alzheimer’s Association. 2018 Alzheimer's disease facts and figures. Alzheimer’s & Dementia. 2018;14:367–429. doi: 10.1016/j.jalz.2018.02.001
  • Findeis MA. The role of amyloid β peptide 42 in Alzheimer’s disease. Pharmacol Ther. 2007;116:266–286. doi: 10.1016/j.pharmthera.2007.06.006
  • Tycko R. Molecular structure of amyloid fibrils: insights from solid-state NMR. Q Rev Biophys. 2006;39:1–55. doi: 10.1017/S0033583506004173
  • Luca S, Yau WM, Leapman R, et al. Peptide conformation and supramolecular organization in amylin fibrils: constraints from solid-state NMR. Biochemistry. 2007;46:13505–13522. doi: 10.1021/bi701427q
  • Thompson LK. Unraveling the secrets of Alzheimer's β-amyloid fibrils. Proc Natl Acad Sci U.S.A. 2003;100:383–385. doi: 10.1073/pnas.0337745100
  • Qiang W, Yau WM, Luo YQ, et al. Antiparallel β-sheet architecture in Iowa-mutant β-amyloid fibrils. Proc Natl Acad Sci U.S.A. 2012;109:4443–4448. doi: 10.1073/pnas.1111305109
  • Lu JX, Qiang W, Yau WM, et al. Molecular structure of β-amyloid fibrils in Alzheimer’s disease brain tissue. Cell. 2013;154:1257–1268. doi: 10.1016/j.cell.2013.08.035
  • Westermark P. Aspects on human amyloid forms and their fibril polypeptides. FEBS J. 2005;272:5942–5949. doi: 10.1111/j.1742-4658.2005.05024.x
  • Lovell MA, Robertson JD, Teesdale WJ, et al. Copper, iron and Zn in Alzheimer’s disease senile plaques. J Neurol Sci. 1998;158:47–52. doi: 10.1016/S0022-510X(98)00092-6
  • Deshpande A, Kawai H, Metherate R, et al. A role for synaptic Zn in activity-dependent Aβ oligomer formation and accumulation at excitatory synapses. J Neurosci. 2009;29:4004–4015. doi: 10.1523/JNEUROSCI.5980-08.2009
  • Miller L, Wang Q, Telivala T, et al. Synchrotron-based infrared and X-ray imaging shows focalized accumulation of Cu and Zn co-localized with β-amyloid deposits in Alzheimer’s disease. J Struct Biol. 2006;155:30–37. doi: 10.1016/j.jsb.2005.09.004
  • Shewmaker F, McGlinchey RP, Wickner RB. Structural insights into functional and pathological amyloid. J Biol Chem. 2011;286:16533–16540. doi: 10.1074/jbc.R111.227108
  • Bruno A, Amandine CD, Stephanie S, et al. Zn(II) binding site to the amyloid-β peptide: insights from spectroscopic studies with a wide series of modified peptides. Inorg Chem. 2016;55:10499–10509. doi: 10.1021/acs.inorgchem.6b01733
  • Severine Z, Sergey AK, Alexey KM, et al. Structural changes of region 1-16 of the Alzheimer disease amyloid beta-peptide upon Zn binding and in vitro aging. J Biol Chem. 2006;281:2151–2161. doi: 10.1074/jbc.M504454200
  • Talmard C, Leuma YR, Faller P. Mechanism of Zn(II)-promoted amyloid formation: Zn(II) binding facilitates the transition from the partially alpha-helical conformer to aggregates of amyloid beta protein. J Biol Inorg Chem. 2009;14:449–455. doi: 10.1007/s00775-008-0461-9
  • Pan L, Patterson JC. Molecular dynamics study of Zn(Aβ) and Zn(Aβ)2. PLoS One. 2013;8:e70681. doi: 10.1371/journal.pone.0070681
  • Nishizawa H, Okumura H. Classical molecular dynamic simulation to understand role of a zinc ion for aggregation of amyloid-β peptides. J Comput Chem Jpn. 2018;17:76–79. doi: 10.2477/jccj.2018-0005
  • Ishimura H, Tomioka S, Kadoya R, et al. Specific interactions between amyloid-β peptides in an amyloid-β hexamer with three-fold symmetry: ab initio fragment molecular orbital calculations in water. Chem Phys Lett. 2017;672:13–20. doi: 10.1016/j.cplett.2017.01.041
  • Olsson MHM, Søndergaard CR, Rostkowski M, et al. PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions. J Chem Theory Comp. 2011;7:525–537. doi: 10.1021/ct100578z
  • Case DA, et al. AMBER 12, University of California, San Francisco. 2012.
  • Van DSD, Lindahl E, Hess B, et al. GROMACS: fast, flexible, and free. J Comput Chem. 2005;26:1701–1718. doi: 10.1002/jcc.20291
  • Lindorff-Larsen K, Piana S, Palmo K, et al. Improved side-chain torsion potentials for the amber ff99SB protein force field. Proteins. 2010;78:1950–1958.
  • Jorgensen WL, Chandrasekhar J, Madura JD, et al. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79:926–935. doi: 10.1063/1.445869
  • Kitaura K, Ikeo E, Asada T, et al. Fragment molecular orbital method: an approximate computational method for large molecules. Chem Phys Lett. 1999;313:701–706. doi: 10.1016/S0009-2614(99)00874-X
  • Komeiji Y, Ishida T, Fedorov DG, et al. Change in a protein's electronic structure induced by an explicit solvent: an ab initio fragment molecular orbital study of ubiquitin. J Comp Chem. 2007;28:1750–1762. doi: 10.1002/jcc.20686
  • Mochizuki Y, Nakano T, Koikegami S, et al. A parallelized integral-direct second-order møller-Plesset perturbation theory method with a fragment molecular orbital scheme. Theor Chem Acc. 2004;112:442–452. doi: 10.1007/s00214-004-0602-3
  • Mochizuki Y, Koikegami S, Nakano T, et al. Large scale MP2 calculations with fragment molecular orbital scheme. Chem Phys Lett. 2004;396:473–479. doi: 10.1016/j.cplett.2004.08.082
  • Fedorov DG, Kitaura K. Second order Moeller-Plesset perturbation theory based upon the fragment molecular orbital method. J Chem Phys. 2004;121:2483–2490. doi: 10.1063/1.1769362
  • Mochizuki Y, Yamashita K, Nakano T, et al. Higher-order correlated calculations based on fragment molecular orbital scheme. Theor Chem Acc. 2011;130:515–530. doi: 10.1007/s00214-011-1036-3
  • Tanaka S, Mochizuki Y, Komeiji Y, et al. Electron-correlated fragment-molecular-orbital calculations for biomolecular and nano systems. Phys Chem Chem Phys. 2014;16:10310–10344. doi: 10.1039/C4CP00316K
  • Nakano T, Kaminuma T, Sato T, et al. Fragment molecular orbital method: use of approximate electrostatic potential. Chem Phys Lett. 2002;351:475–480. doi: 10.1016/S0009-2614(01)01416-6
  • Fukuzawa K, Nakano T, Kato A, et al. Applications of the fragment molecular orbital method for bio-macromolecules. J Comp Chem. 2007;6:185–198.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.