298
Views
2
CrossRef citations to date
0
Altmetric
Articles

The base-catalyzed keto-enol tautomerism of chrysophanol anthrone. A DFT investigation of the base-catalyzed reaction

, , , , , , & show all
Pages 716-723 | Received 04 Nov 2018, Accepted 04 Feb 2019, Published online: 21 Feb 2019

References

  • Brovarets’ OO, Hovorun DM. Prototropic tautomerism and basic molecular principles of hypoxanthine mutagenicity: an exhaustive quantum-chemical analysis. J Biomol Struct Dyn. 2013;31:913–936. doi: 10.1080/07391102.2012.715041
  • Samijlenko SP, Yurenko YP, Stepanyugin V, et al. Tautomeric equilibrium of uracil and thymine in model protein-nucleic acid contacts. Spectroscopic and quantum chemical approach. J Phys Chem. 2011;B 114:1454–1461.
  • Brovarets’ OO, Hovorun DM. How stable are the mutagenic tautomers of DNA bases? Biopolym Cell. 2010;26:72–76. doi: 10.7124/bc.000147
  • Brovarets’ OO, Hovorun DM. Stability of mutagenic tautomers of uracil and its halogen derivatives: the results of quantum-mechanical investigation. Biopolym Cell. 2010;26:295–298. doi: 10.7124/bc.000162
  • Antonov L. Tautomerism: introduction, history, and recent developments in experimental and theoretical methods. Tautomerism: methods and theories. Weinheim: Wiley-VCH; 2013.
  • Antonov L. Tautomerism: A historical perspective. Tautomerism: concepts and applications in science and technology. Weinheim: WILEY-VCH; 2016.
  • Ogawa K, Kasahara Y, Ohtani Y, et al. Crystal structure change for the thermochromy of N-Salicylideneanilines. The first observation by X-ray diffraction. J Am Chem Soc. 1998;120:7107–7108. doi: 10.1021/ja980972v
  • Antonov L, Fabian WMF, Nedeltcheva D, et al. Tautomerism of 2-hydroxynaphthaldehyde Schiff bases. J Chem Soc Perkin Trans. 2000;2(6):1173–1179. doi: 10.1039/b000798f
  • Hadjoudisa E, Mavridisa IM. Photochromism and thermochromism of Schiff bases in the solid state: structural aspects. Chem Soc Rev. 2004;33:579–588.
  • Fabian WMF, Antonov L, Nedeltcheva D, et al. Tautomerism in Hydroxynaphthaldehyde Anils and Azo Analogues: a combined experimental and computational study. J Phys Chem A. 2004;108:7603–7612. doi: 10.1021/jp048035z
  • Ziółek M, Kubicki J, Maciejewski A, et al. Enol-keto tautomerism of aromatic photochromic Schiff base N, N′-bis(salicylidene)-p-phenylenediamine: ground state equilibrium and excited state deactivation studied by solvatochromic measurements on ultrafast time scale. J Phys Chem. 2006;124:124518(1)–124518(10). doi: 10.1063/1.2179800
  • Nedeltcheva D, Antonov L, Lycka A, et al. Chemometric models for quantitative analysis of tautomeric Schiff bases and Azo dyes. Curr Org Chem. 2009;13:217–240. doi: 10.2174/138527209787314832
  • Ali ST, Antonov L, Fabian WMF. Phenol–quinone tautomerism in (Arylazo)naphthols and the analogous Schiff bases: benchmark calculations. J Phys Chem A. 2014;118:778–789. doi: 10.1021/jp411502u
  • Hutchins KM, Dutta S, Loren BP, et al. Co-crystals of a Salicylideneaniline: photochromism involving planar dihedral angles. Chem Mater. 2014;26:3042–3044. doi: 10.1021/cm500823t
  • Carletta A, Buol X, Leyssens T, et al. Polymorphic and isomorphic cocrystals of a N-Salicylidene-3-aminopyridine with Dicarboxylic acids: tuning of solid-state photo- and thermochromism. J Phys Chem C. 2016;120:10001–10008. doi: 10.1021/acs.jpcc.6b02734
  • Quertinmont J, Carletta A, Tumanov NA, et al. Assessing density functional theory approaches for predicting the structure and relative energy of Salicylideneaniline molecular switches in the solid state. J Phys Chem C. 2017;121:6898–6908. doi: 10.1021/acs.jpcc.7b00580
  • Zutterman F, Louant O, Mercier G, et al. Predicting keto–enol equilibrium from combining UV/visible absorption spectroscopy with quantum chemical calculations of vibronic structures for many excited states. A case study on Salicylideneanilines. J Phys Chem A. 2018;122:5370–5374. doi: 10.1021/acs.jpca.8b03389
  • Wu C-C, Lien M-H. Ab initio study on the substituent effect in the transition state of keto−enol tautomerism of acetyl derivatives. J Phys Chem. 1996;100:594–600. doi: 10.1021/jp951647m
  • Abdullah MA, Ali AM, Marziah M, et al. Establishment of cell suspension cultures of Morinda elliptica for the production of anthraquinones. Plant Cell Tissue Organ Cult. 1998;54:173–182. doi: 10.1023/A:1006108717255
  • Komaraiah P, Kishor PBK, Carlsson M, et al. Enhancement of anthraquinone accumulation in Morinda citrifolia suspension cultures. Plant Sci. 2005;168:1337–1344. doi: 10.1016/j.plantsci.2005.01.017
  • García-Sosa K, Villarreal-Alvarez N, Lübben P, et al. Chrysophanol, an antimicrobial anthraquinone from the root extract of Colubrina greggii. J Mex Chem Soc. 2006;50:76–78.
  • Ehrig S, Efferth T. Development of drug resistance in Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense. treatment of human African trypanosomiasis with natural products [review]. Int J Mol Med. 2008;22:411–419.
  • Hoet S, Opperdoes F, Brun R, et al. Natural products active against African trypanosomes: a step towards new drugs. Nat Prod Rep. 2004;21:353–364. doi: 10.1039/b311021b
  • Dave H, Ledwani H. A review on anthraquinones isolated from Cassia species and their applications. Indian J Nat Prod Resour. 2012;3:291–319.
  • Baba H, Takemura T. Spectrophotometric investigations of the tautomeric reactions between anthrone and anthranol-I: the ketoenol equilibrium. Tetrahedron. 1968;24:4779–4791. doi: 10.1016/S0040-4020(01)98674-0
  • Korth HG, Mulder P. Anthrone and related hydroxyarenes: tautomerization and hydrogen bonding. J Org Chem. 2013;78:7674–7682. doi: 10.1021/jo401243b
  • Mueller K, Leukel P, Ziereis K, et al. Antipsoriatic anthrones with modulated redox properties. 2. Novel derivatives of Chrysarobin and Isochrysarobin-antiproliferative activity and 5-lipoxygenase inhibition. J Med Chem. 1994;37:1660–1669. doi: 10.1021/jm00037a017
  • Geiger W. 1,8-Dihydroxyanthrone and two isomeric 1,1′,8,8′-tetrahydroxy-10,10′-bianthrones. Chem Ber. 1974;107:2976–2984. doi: 10.1002/cber.19741070920
  • Zhou L, Deng H, Deng Q, et al. Analysis of three different types of fullerene derivatives by laser desorption/ionization time-of-flight mass spectrometry with new matrices. Rapid Commun Mass Spectrom. 2005;19:3523–3530. doi: 10.1002/rcm.2226
  • Segal A, Katz C, Van Duuren BL. Structure and tumor-promoting activity of anthralin (1,8-dihydroxy-9-anthrone) and related compounds. J Med Chem. 1971;14:1152–1154. doi: 10.1021/jm00294a002
  • Avdovich HW, Neville GA. 1,8-Dihydroxy-9-anthrone, the revised structure for anthralin, a U. S.P. reference standard. Can J Spectrosc. 1980;25:110–113.
  • Ahmed FR. The correct structural formula for anthralin. Acta Cryst B. 1980;B36:3184–3186. doi: 10.1107/S0567740880011247
  • Takemura T, Baba H. Spectrophotometric investigations of the tautomeric reaction between anthrone and anthranol. 2. The base-catalyzed reaction. Tetrahedron. 1968;24:5311–5321. doi: 10.1016/S0040-4020(01)96326-4
  • Menger FM, Williams RF. Proton migration in an aprotic solvent catalyzed by very weak bases. J Org Chem. 1974;39:2131–2133. doi: 10.1021/jo00928a041
  • Fujii T, Mishima S, Tanaka N, et al. Absorption and fluorescence spectra of 9-anthrol and its chemical species in solution. Res Chem Intermed. 1997;23:829–839. doi: 10.1163/156856797X00105
  • Zhao Y, Truhlar DG. Density functionals with broad applicability in chemistry. Acc Chem Res. 2008;41:157–167. doi: 10.1021/ar700111a
  • Pieniazek SN, Clemente FR, Houk KN, et al. Sources of error in DFT computations of C–C bond formation thermochemistries: π→σ transformations and error cancellation by DFT methods. Angew Chem Int Ed Engl. 2008;47:7746–7749. doi: 10.1002/anie.200801843
  • Hohenstein EG, Chill ST, Sherrill CD. Assessment of the performance of the M05-2X and M06-2X exchange-correlation functionals for noncovalent interactions in biomolecules. J Chem Theory Comput. 2008;4:1996–2000. doi: 10.1021/ct800308k
  • Greenwood JR, Calkins D, Sullivan AP, et al. Towards the comprehensive, rapid, and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous solution. J Comput Aided Mol Des. 2010;24:591–604. doi: 10.1007/s10822-010-9349-1
  • Zhaoa Y, Truhlar DG. Applications and validations of the Minnesota density functional. Chem Phy Lett. 2011;502:1–13. doi: 10.1016/j.cplett.2010.11.060
  • Ivanova D, Deneva V, Nedeltcheva D, et al. Tautomeric transformations of piroxicam in solution: a combined experimental and theoretical study. RSC Adv. 2015;5:31852–31860. doi: 10.1039/C5RA03653D
  • Martínez RF, Ávalos M, Babiano R, et al. Tautomerism in Schiff bases. The cases of 2-hydroxy-1-naphthaldehyde and 1-hydroxy-2-naphthaldehyde investigated in solution and the solid state. Org Biomol Chem. 2011;9:8268–8275. doi: 10.1039/c1ob06073b
  • Gerega A, Lapinski L, Nowak MJ, et al. Systematic effect of Benzo-Annelation on Oxo−Hydroxy tautomerism of heterocyclic compounds. experimental matrix-isolation and theoretical study. J Phys Chem A. 2014;118:778–789. doi: 10.1021/jp411502u
  • Peng C, Ayala PY, Schlegel HB, et al. Using redundant internal coordinates to optimize equilibrium geometries and transition states. J Comput Chem. 1996;17:49–56. doi: 10.1002/(SICI)1096-987X(19960115)17:1<49::AID-JCC5>3.0.CO;2-0
  • Fukui K. The path of chemical reactions-the IRC approach. Acc Chem Res. 1981;14:363–368. doi: 10.1021/ar00072a001
  • Foresman JB, Keith TA, Wiberg KB, et al. Solvent effects 5. The influence of cavity shape, truncation of electrostatics, and electron correlation on ab initio reaction field calculations. J Phys Chem. 1996;100:16098–16104. doi: 10.1021/jp960488j
  • Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 09, revision A.1. Wallingford (CT): Gaussian, Inc.; 2009.
  • Contreras-Garcia J, Johnson ER, Keinan S, et al. NCIPLOT: A program for plotting noncovalent interaction regions. J Chem Theory Comput. 2011;7:625–632. doi: 10.1021/ct100641a
  • Humphrey W, Dalke A, Schulten K. VDM: Visual molecular dynamics. J Mol Graphics. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5
  • Konig FB, Schonbohm J, Bayles D. AIM2000-a program to analyze and visualize atoms in molecules. J Comput Chem. 2001;22:545–559. doi: 10.1002/1096-987X(20010415)22:5<545::AID-JCC1027>3.0.CO;2-Y
  • Abraham MH, Grellier PL, Prior DV, et al. A general treatment of hydrogen bond complexation constants in tetrachloromethane. J Am Chem Soc. 1988;110:8534–8536. doi: 10.1021/ja00233a034

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.