344
Views
8
CrossRef citations to date
0
Altmetric
Articles

Structure and dynamics of atactic Na+-poly(acrylic) acid (PAA) polyelectrolyte in aqueous solution in dilute, semi-dilute and concentrated regimes

&
Pages 876-895 | Received 15 Jul 2018, Accepted 14 Apr 2019, Published online: 14 May 2019

References

  • Rubinstein M, Colby RH. Polymer physics. New York (NY): Oxford University Press; 2003.
  • Forster S, Schmidt M. Polyelectrolytes in solutions. AdvPolym Sci. 1995;120:51–133.
  • Liao Q, Dobrynin AV, Rubinstein M. Molecular dynamics simulations of polyelectrolytes solutions nonuniform stretching of chains and scaling behavior. Macromolecules. 2003;36(9):3386–3398. doi: 10.1021/ma025995f
  • Dobrynin AV, Rubinstein M. Theory of polyelectrolytes in solutions and at surfaces. ProgPolym Sci. 2005;30(11):1049–1118.
  • Carrillo JMY, Dobrynin AV. Polyelectrolytes in salt solutions: molecular dynamics simulations. Macromolecules. 2011;44(14):5798–5816. doi: 10.1021/ma2007943
  • Chang R, Yethiraj A. Brownian dynamics simulations of salt-free polyelectrolyte solutions. J Chem Phys. 2002;116(12):5284–5298. doi: 10.1063/1.1453396
  • Micka U, Holm C, Kremer K. Strongly charged flexible polyelectrolytes in poor solvents: molecular dynamic simulations. Langmuir. 1999;15(12):4033–4044. doi: 10.1021/la981191a
  • Stevens MJ, Kremer K. The nature of flexible linear polyelectrolytes in salt free solution: a molecular dynamics study. J Chem Phys. 1995;103(4):1669–1690. doi: 10.1063/1.470698
  • Jiang H, Taranekar P, Reynolds JR, et al. Conjugated polyelectrolytes: synthesis, photophysics, and applications. AngewChemInt Ed. 2009;48(24):4300–4316.
  • Xu ZK, Dai QW, Liu ZM, et al. Microporous polypropylene hollow fiber membranes Part II. Pervaporation separation of water/ethanol mixtures by the poly(acrylic acid) grafted membranes. J Membr Sci. 2003;214(1):71–81. doi: 10.1016/S0376-7388(02)00536-7
  • Kim SG, Lee KS, Lee KH. Pervaporation separation of sodium alginate/chitosan polyelectrolyte complex composite membranes for the separation of water/alcohol mixtures: characterization of thepermeation behavior with molecular modeling techniques. J Appl Polym Sci. 2007;103(4):2634–2641. doi: 10.1002/app.25386
  • Kudryashova EV, Gladilin AK, Vakurov AV, et al. Enzyme-polyelectrolyte complexes in water-ethanol mixtures: negatively charged groups artificially introduced into α-chymotrypsin provide additional activation and stabilization effects. Biotech Bioengg. 1997;55(2):267–277. doi: 10.1002/(SICI)1097-0290(19970720)55:2<267::AID-BIT4>3.0.CO;2-G
  • Kogej K, Berghmans H, Reynaers H, et al. Unusual behavior of atactic poly(methacrylic acid) in aqueous solutions monitored by wide-angle light scattering. J Phys Chem B. 2004;108(47):18164–18173. doi: 10.1021/jp048657k
  • Mandel M, Leyte JC, Stadhouder MG. The conformational transition of poly(methacrylic acid) in solution. J Phys Chem. 1967;71(3):603–612. doi: 10.1021/j100862a600
  • Dobrynin AV. Theory and simulations of charged polymers: from solution properties to polymeric nanomaterials. Curr Opin Colloid Interface Sci. 2008;13(6):376–388. doi: 10.1016/j.cocis.2008.03.006
  • Chockalingam R, Natarajan U. Self-association behavior of atacticpolymethacrylic acid in aqueous solution investigated by atomistic molecular dynamic simulations. Mol Simul. 2014;41(13):1110–1121. doi: 10.1080/08927022.2014.947481
  • Hoffmann H, Liveri MLT, Cavasino FP. Electric birefringence and zero-shear viscosity studies of the conformational changes of polyacrylic acid and polymethacrylic acids with pH and concentration. J ChemSoc Faraday Trans. 1997;93(17):3161–3165. doi: 10.1039/a701735i
  • Nierlich M, Boue F, Lapp A, et al. Radius of gyration of a polyion in salt free polyelectrolyte solutions measured by S.A.N.S. J Physique. 1985;46(4):649–655. doi: 10.1051/jphys:01985004604064900
  • Laguecir A, Ulrich S, Labille J, et al. Size and pH effect on electrical and conformational behavior of poly(acrylic acid): simulation and experiment. Eur Polym J. 2006;42(5):1135–1144. doi: 10.1016/j.eurpolymj.2005.11.023
  • Buffle J. Complexation reactions in aquatic systems. An analytical approach. Chichester: Ellis Horwood Publishers; 1988, 700 pp.
  • Hoffmann H, Kamburova K, Maeda H, et al. Investigation of pH dependence of poly(acrylic acid) conformation by means of electric birefringence. Colloids Surf A. 2010;354(1–3):61–64. doi: 10.1016/j.colsurfa.2009.07.032
  • Swift T, Swanson L, Geoghegan M, et al. The pH responsive behavior of poly(acrylic acid) in aqueous solution is dependent on molar mass. Soft Matter. 2016;12L(9):2542–2549. doi: 10.1039/C5SM02693H
  • Mehrdad A, Samadiani N, Poormoosa L. Effect of temperature and hydrochloric acid on the intrinsic viscosity of poly(acrylic acid) in aqueous solutions. J Mol Liq. 2013;187:177–182. doi: 10.1016/j.molliq.2013.06.018
  • Gupta AK, Natarajan U. Tacticity effects on conformational structure and hydration of poly-(methacrylic acid) in aqueous solutions-a molecular dynamics simulation study. Mol Simul. 2016;42(9):725–736. doi: 10.1080/08927022.2015.1086485
  • Sappidi P, Natarajan U. Factors responsible for the aggregation behavior of hydrophobic polyelectrolyte PEA in aqueous solution studied by molecular dynamics simulations. J Mol Graph Model. 2017;75:306–315. doi: 10.1016/j.jmgm.2017.04.007
  • Zhu S, Pelton RH, Hamielec AE. Gel formation of polyacrylic acid in dilute aqueous solutions via radiation crosslinking. Eur Polym J. 1998;34:487–492. doi: 10.1016/S0014-3057(97)00119-5
  • Taylor TJ, Stivala SS. Small-angle X-ray scattering study of a weak polyelectrolyte in water. J Polym Sci Part B Polym Phys. 2003;41(12):1263–1272. doi: 10.1002/polb.10460
  • Sulatha MS, Natarajan U. Origin of the difference in structural behavior of poly(acrylic acid) and poly(methacrylic acid) in aqueous solution discerned by explicit-solvent explicit-ion MD simulations. IndEngChem Res. 2011;50(21):11785–11796.
  • Sedlak M. Poly(alkylacrylic acid)s: solution behavior and self-assembly. Colloid Polym Sci. 2017;295(8):1281–1292. doi: 10.1007/s00396-016-4003-7
  • De Gennes PG, Pincus P, Velasco RM, et al. Remarks on polyelectrolyte conformation. J Phys France. 1976;37(12):1461–1473. doi: 10.1051/jphys:0197600370120146100
  • Katiyar RS, Jha PK. Phase behavior of aqueous polyacrylic acid solutions using atomistic molecular dynamics simulations of model oligomers. Polymer. 2017;114:266–276. doi: 10.1016/j.polymer.2017.03.007
  • Nishida K, Kaji K, Kanaya T. High concentration crossovers of polyelectrolyte solutions. J Chem Phys. 2001;114(19):8671–8677. doi: 10.1063/1.1367383
  • Prabhu VM, Amis EJ, Bossev DP, et al. Counterion associative behavior with flexible polyelectrolytes. J Chem Phys. 2004;121(9):4424–4429. doi: 10.1063/1.1776556
  • Moussaid A, Schosseler F, Munch JP, et al. Structure of polyacrylic acid and polymethacrylic acid solutions: a small angle neutron scattering study. J Phys II France. 1993;3(4):573–594. doi: 10.1051/jp2:1993152
  • Ander P, Kardan M. Interactions of sodium ions with polyelectrolytes of constant charge density. Macromolecules. 1984;17(11):2436–2441. doi: 10.1021/ma00141a039
  • Sedlák M, Koňák Č, Štěpánek P, et al. Semidilute solutions of poly (methacrylic acid) in the absence of salt: dynamic light-scattering study. Polymer. 1987;28(6):873–880. doi: 10.1016/0032-3861(87)90156-X
  • Koene RS, Mandel M. Quasi-elastic light scattering by polyelectrolyte solutions without added salt. Macromolecules. 1983;16(6):973–978. doi: 10.1021/ma00240a029
  • Koene RS, Mandel M. Scaling relations for aqueous polyelectrolyte-salt solutions. 1. Quasi-elastic light scattering as a function of polyelectrolyte concentration and molar mass. Macromolecules. 1983;16(6):220–227. doi: 10.1021/ma00236a013
  • Koene RS, Nicolai T, Mandel M. Scaling relations for aqueous polyelectrolyte-salt solutions. 2. Quasi-elastic light scattering as a function of polyelectrolyte concentration and salt concentration. Macromolecules. 1983;16(2):227–231. doi: 10.1021/ma00236a014
  • Koene RS, Smit HWJ, Mandel M. Scaling relations for aqueous polyelectrolyte-salt solutions. 3. Osmotic pressure as a function of molar mass and ionic strength inthe Semidilute regime. Macromolecules. 1983;16(2):231–236. doi: 10.1021/ma00236a015
  • Imai N, Mandel M. Theory of the polyion diffusion constant in polyelectrolyte solutions containing low molar mass electrolyte. Macromolecules. 1982;15(6):1562–1566. doi: 10.1021/ma00234a020
  • Li B, Xu L, Wu Q, et al. Various types of hydrogen bonds, their temperature dependence and water−polymer interaction in hydrated poly (acrylic acid) as revealed by 1H solid-state NMR spectroscopy. Macromolecules. 2007;40:5776–5786. doi: 10.1021/ma070485c
  • Max JJ, Chapados C. Infrared spectroscopy of aqueous carboxylic acids: comparison between different acids and their salts. J Phys Chem A. 2004;108:3324–3337. doi: 10.1021/jp036401t
  • Gojło E, Smiechowski M, Panuszko A, et al. Hydration of carboxylate anions: infrared spectroscopy of aqueous solutions. J Phys Chem B. 2009;113:8128–8136. doi: 10.1021/jp811346x
  • Śmiechowski M, Gojło E, Stangret J. Hydration of simple carboxylic acids from infrared spectra of HDO and theoretical calculations. J Phys Chem B. 2011;115:4834–4842. doi: 10.1021/jp200748u
  • Suter UW, Flory PJ. Conformational energy and configurational statistics of polypropylene. Macromolecules. 1975;8(6):765–776. doi: 10.1021/ma60048a018
  • Rapold RF, Suter UW. Conformational characteristics of polystyrene. Macromol Theory Simul. 1994;3(1):1–17. doi: 10.1002/mats.1994.040030102
  • Suter UW. Epimerization of vinyl polymers to stereochemical equilibrium. Macromolecules. 1981;14(3):523–528. doi: 10.1021/ma50004a012
  • Accelrys Software Inc: Materials Studio Modeling Environment. Release 5.0. San Diego, USA; 2007.
  • Sulatha MS, Natarajan U. Molecular dynamics simulations of PAA – PMA copolymers in dilute aqueous solution: chain conformations and hydration properties. IndEng Chem Res. 2012;51(33):10833–10840. doi: 10.1021/ie301244n
  • Chockalingam R, Natarajan U. Dynamics of conformations, hydrogen bonds and translational diffusion of poly(methacrylic acid) in aqueous solution and the concentration transition in MD simulations. Mol Phys. 2015;113(21):3370–3382. doi: 10.1080/00268976.2015.1024776
  • Oostenbrink C, Villa A, Mark AE, et al. A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force – field parameter sets 53A5 and 53A6. J Comput Chem. 2004;25(13):1656–1676. doi: 10.1002/jcc.20090
  • Hess B, Kutzner C, Van der Spoel D, et al. GROMACS 4: algorithm for highly efficient, load balanced and scalable molecular simulation. J Chem Theory Comput. 2008;4(3):435–447. doi: 10.1021/ct700301q
  • van der Spoel D, Lindahl E, Hess B, et al. GROMACS: fast, flexible and free. J Comp Chem. 2005;26(16):1701–1718. doi: 10.1002/jcc.20291
  • Berendsen HJC, Grigera JR, Straatsma TP. The missing term in effective pair potentials. J Phys Chem. 1987;91(24):6269–6271. doi: 10.1021/j100308a038
  • Vega C, Abascal JLF. Simulating water with rigid non-polarizable models: a general perspective. Phys Chem Chem Phys. 2011;13(44):19663–19688. doi: 10.1039/c1cp22168j
  • Gupta AK, Natarajan U. Anionic polyelectrolyte poly(acrylic acid) (PAA) chain shrinkage in water–ethanol solution in presence of Li+ and Cs+ metal ions studied by molecular dynamics simulations. Mol Simul. 2017;43(8):625–637. doi: 10.1080/08927022.2017.1279288
  • Ryckaert JP, Bellemans A. Molecular dynamics of liquid n-butane near its boiling point. Chem Phys Lett. 1975;30(1):123–125. doi: 10.1016/0009-2614(75)85513-8
  • Berendsen HJC, Postma JP, van Gunsteren WF, et al. Molecular dynamics with coupling to an external bath. J Chem Phys. 1984;81(8):3684–3690. doi: 10.1063/1.448118
  • Eslami H, Mozaffari F, Moghadasi J, et al. Molecular dynamics simulation of confined fluids in isosurface-isothermal-isobaric ensemble. J Chem Phys. 2008;129(19):194702–194708. doi: 10.1063/1.3009844
  • Basconi JE, Shirts MR. Effects of temperature control algorithms on transport properties and kinetics in molecular dynamics simulations. J Chem Theory Comp. 2013;9(7):2887–2899. doi: 10.1021/ct400109a
  • Hess B, Bekker H, Berendsen HJC, et al. LINCS: a linear constraint solver for molecular simulations. J Comput Chem. 1997;18(12):1463–1472. doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Hockney RW. The potential calculation and some applications. Methods Comput Phys. 1970;9:136–211.
  • Darden T, York D, Pedersen L. Particle mesh Ewald: An N.log(N) method for Ewald sums in large systems. J Chem Phys. 1993;98(12):10089–10092. doi: 10.1063/1.464397
  • Essmann U, Perera L, Berkowitz ML, et al. A smooth particle mesh Ewald method. J Chem Phys. 1995;103(19):8577–8593. doi: 10.1063/1.470117
  • Chremos A, Douglas JF. Counter-ion distribution around flexible polyelectrolytes having different molecular architecture. Soft Matter. 2016;12(11):2932. doi: 10.1039/C5SM02873F
  • Doi M, Edwards SF. The theory of polymer dynamics. New York (NY): Claredson; 1986.
  • Luzar AJ. Resolving the hydrogen bond dynamics conundrum. J Chem Phys. 2000;113(23):10663–10675. doi: 10.1063/1.1320826
  • Luzar AJ, Chandler D. Hydrogen bond kinetics in liquid water. Nature. 1996;379(6560):55–57. doi: 10.1038/379055a0
  • Chandler D. Statistical mechanics of isomerization dynamics in liquids and the transition state approximation. J Chem Phys. 1978;68(6):2959–2970. doi: 10.1063/1.436049
  • Jha PK, Larson RG. Assessing the efficiency of polymeric excipients by atomistic molecular dynamics simulations. Mol Pharm. 2014;11(5):1676–1686. doi: 10.1021/mp500068w
  • Huang W, Ramesh R, Jha PK, et al. A systematic coarse-grained model for methylcellulose polymers: spontaneous ring formation at elevated temperature. Macromolecules. 2016;49(4):1490–1503. doi: 10.1021/acs.macromol.5b02373
  • Hoda N, Larson RG. Explicit-and implicit-solvent molecular dynamics simulations of complex formation between polycations and polyanions. Macromolecules. 2009;42(22):8851–8863. doi: 10.1021/ma901632c
  • Yethiraj A. Conformational properties and static structure factor of polyelectrolyte solutions. Phys Rev Lett. 1997;78(19):3789–3792. doi: 10.1103/PhysRevLett.78.3789
  • Ise N, Okubo T, Yamamoto K, et al. Ordered structure in dilute solutions of ionic biopolymers. 2. Small-angle x-ray scattering study of sodium polyacrylate solution. J Am Chem Soc. 1980;102(27):7901–7906. doi: 10.1021/ja00547a013
  • Schosseler F, Ilmain F, Candau SJ. Structure and properties of partially neutralized poly (acrylic acid) gels. Macromolecules. 1991;24(1):225–234. doi: 10.1021/ma00001a035
  • Andreeva AS, Philippova OE, Khokhlov AR, et al. Effect of the mobility of charged units on the microphase separation in amphiphilic polyelectrolyte hydrogels. Langmuir. 2005;21(4):1216–1222. doi: 10.1021/la0478999
  • Satokawa Y, Shikata T. Hydration structure and dynamic behavior of poly(vinyl alcohol)s in aqueous solution. Macromolecules. 2008;41(8):2908–2913. doi: 10.1021/ma702793t
  • Patel SS, Takahashi KM. Polymer dynamics in dilute and semidilute solutions. Macromolecules. 1992;25(17):4382–4391. doi: 10.1021/ma00043a022
  • Huang CC, Winkler RG, Sutmann G, et al. Semidilute polymer solutions at equilibrium and under shear flow. Macromolecules. 2010;43(23):10107–10116. doi: 10.1021/ma101836x
  • Lubas W, Ander P. Sodium ion diffusion coefficients in aqueous salt-free polyelectrolyte solutions. Macromolecules. 1980;13(2):318–321. doi: 10.1021/ma60074a021
  • Huizenga JR, Grieger PF, Wall FT. Electrolytic properties of aqueous solutions of polyacrylic acid and sodium hydroxide. 11. Diffusion experiments using radioactive sodium. J Am Chem Soc. 1950;72(9):4228–4232. doi: 10.1021/ja01165a111
  • Dixler DS., Ander P. Self-diffusion coefficients of sodium ion in aqueous sodium polyacrylate solutions containing sodium chloride. J Phys Chem. 1973;77(22):2684–2687. doi: 10.1021/j100640a024
  • Stilbs P., Lindman B. FT NMR self-diffusion for the study of counterion binding in polyelectrolyte solutions. J MagnReson. 1982;48(1):132–137.
  • Chu JC, Mak C H. Inter-and intrachain attractions in solutions of flexible polyelectrolytes at nonzero concentration. J Chem Phys. 1999;110(5):2669–2679. doi: 10.1063/1.477989
  • Leaist DG. Coupled diffusion of weakly ionized polyelectrolytes. Polyacrylic acids in water. J Sol Chem. 1989;18(5):421–435. doi: 10.1007/BF00657330
  • Pristinski D, Kozlovskaya V, Sukhishvili SA. Fluorescence correlation spectroscopy studies of diffusion of a weak polyelectrolyte in aqueous solutions. J Chem Phys. 2005;122(1):014907. doi: 10.1063/1.1829255
  • Rubinstein M, Colby RH, Dobrynin AV. Dynamics of semidilute polyelectrolyte solutions. Phys Rev Lett. 1994;73(20):2776–2779. doi: 10.1103/PhysRevLett.73.2776
  • Hess B, van der Vegt NF. Hydration thermodynamic properties of amino acid analogues: a systematic comparison of biomolecular force fields and water models. J Phys Chem B. 2006;110(35):17616–17626. doi: 10.1021/jp0641029
  • Kocherbitov V, Ulvenlund S, Briggner LE, et al. Hydration of a natural polyelectrolyte xanthan gum: comparison with non-ionic carbohydrates. CarbohydrPolym. 2010;82(2):284–290.
  • Crescenzi V, Quadrifoglio F, Delben F. Calorimetric investigation of poly (methacrylic acid) and poly (acrylic acid) in aqueous solution. J PolymSci B Polym Phys. 1972;10(2):357–368. doi: 10.1002/pol.1972.160100215

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.