439
Views
7
CrossRef citations to date
0
Altmetric
Articles

Modelling and simulation of DNA-mediated self-assembly for superlattice design

, &
Pages 1203-1210 | Received 17 Jan 2019, Accepted 20 Apr 2019, Published online: 02 May 2019

References

  • Lee JS, Han MS, Mirkin CA. Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalised gold nanoparticles. Angew Chem Int Ed. 2007;46:4093–4096. doi: 10.1002/anie.200700269
  • Kang Y, Ye X, Chen J, et al. Design of Pt-Pd binary superlattices exploiting shape effects and synergistic effects for oxygen reduction reactions. J Am Chem Soc. 2013;135:42–45. doi: 10.1021/ja3097527
  • Kang Y, Ye X, Chen J, et al. Engineering catalytic contacts and thermal stability: gold/iron oxide binary nanocrystal superlattices for CO oxidation. J Am Chem Soc. 2013;135:1499–1505. doi: 10.1021/ja310427u
  • Barnaby SN, Thaner RV, Ross MB, et al. Modular and chemically responsive oligonucleotide ‘bonds’ in nanoparticle superlattices. J Am Chem Soc. 2015;137:13566–13571. doi: 10.1021/jacs.5b07908
  • Boles MA, Engel M, Talapin DV. Self-assembly of colloidal nanocrystals: from intricate structures to functional materials. Chem Rev. 2016;116:11220–11289. doi: 10.1021/acs.chemrev.6b00196
  • Diba FS, Boden A, Thissen H, et al. Binary colloidal crystals (BCCs): interactions, fabrication, and applications. Adv Colloid Interface Sci. 2018;261:102–127. doi: 10.1016/j.cis.2018.08.005
  • Whitelam S, Jack RL. The statistical mechanics of dynamic pathways to self-assembly. Annu Rev Phys Chem. 2015;66:143–163. doi: 10.1146/annurev-physchem-040214-121215
  • Maye MM, Nykypanchuk D, Van Der Lelie D, et al. DNA-regulated micro- and nanoparticle assembly. Small. 2007;3:1678–1682. doi: 10.1002/smll.200700357
  • Geerts N, Eiser E. DNA-functionalized colloids: physical properties and applications. Soft Matter. 2010;6:4647–4660. doi: 10.1039/c001603a
  • Macfarlane RJ, Lee B, Jones MR, et al. Nanoparticle superlattice engineering with DNA. Science. 2011;334:204–208. doi: 10.1126/science.1210493
  • Auyeung E, Li T, Senesi AJ, et al. DNA-mediated nanoparticle crystallization into Wulff polyhedra. Nature. 2014;505:73–77. doi: 10.1038/nature12739
  • Kim Y, Macfarlane RJ, Jones MR, et al. Transmutable nanoparticles with reconfigurable surface ligands. Science. 2016;351:579–582. doi: 10.1126/science.aad2212
  • Cigler P, Lytton-Jean AKR, Anderson DG, et al. DNA-controlled assembly of a NaTl lattice structure from gold nanoparticles and protein nanoparticles. Nat Mater. 2010;9:918–922. doi: 10.1038/nmat2877
  • Casey MT, Scarlett RT, Rogers WB, et al. Driving diffusionless transformations in colloidal crystals using DNA handshaking. Nat Commun. 2012;3:1209. doi: 10.1038/ncomms2206
  • Song M, Ding Y, Zerze H, et al. Binary superlattice design by controlling DNA-mediated interactions. Langmuir. 2018;34:991–998. doi: 10.1021/acs.langmuir.7b02835
  • Rogers WB, Manoharan VN. Programming colloidal phase transitions with DNA strand displacement. Science. 2015;347:639–642. doi: 10.1126/science.1259762
  • Zhang Y, Pal S, Srinivasan B, et al. Selective transformations between nanoparticle superlattices via the reprogramming of DNA-mediated interactions. Nat Mater. 2015;14:840–847. doi: 10.1038/nmat4296
  • Gang O, Tkachenko AV. DNA-programmable particle superlattices: assembly, phases, and dynamic control. MRS Bull. 2016;41:381–387. doi: 10.1557/mrs.2016.92
  • Li T, Sknepnek R, Macfarlane RJ, et al. Modeling the crystallization of spherical nucleic acid nanoparticle conjugates with molecular dynamics simulations. Nano Lett. 2012;12:2509–2514. doi: 10.1021/nl300679e
  • Vo T, Venkatasubramanian V, Kumar S, et al. Stoichiometric control of DNA-grafted colloid self-assembly. Proc Natl Acad Sci USA. 2015;112:4982–4987. doi: 10.1073/pnas.1420907112
  • Scarlett RT, Crocker JC, Sinno T. Computational analysis of binary segregation during colloidal crystallization with DNA-mediated interactions. J Chem Phys. 2010;132:234705. doi: 10.1063/1.3453704
  • Theodorakis PE, Fytas NG, Kahl G, et al. Self-assembly of DNA-functionalized colloids. Condens Matter Phys. 2015;18:22801. doi: 10.5488/CMP.18.22801
  • Zhang X, Wang R, Xue G. Programming macro-materials from DNA-directed self-assembly. Soft Matter. 2015;11:1862–1870. doi: 10.1039/C4SM02649G
  • Milam VT. Oligonucleotide-based recognition in colloidal systems – opportunities and challenges. Curr Opin Colloid Interface Sci. 2016;26:75–83. doi: 10.1016/j.cocis.2016.09.017
  • Jenkins IC, Casey MT, McGinley JT, et al. Hydrodynamics selects the pathway for displacive transformations in DNA-linked colloidal crystallites. Proc Natl Acad Sci USA. 2014;111:4803–4808. doi: 10.1073/pnas.1318012111
  • Srinivasan B, Vo T, Zhang Y, et al. Designing DNA-grafted particles that self-assemble into desired crystalline structures using the genetic algorithm. Proc Natl Acad Sci USA. 2013;110:18431–18435. doi: 10.1073/pnas.1316533110
  • Mahynski NA, Pretti E, Shen VK, et al. Using symmetry to elucidate the importance of stoichiometry in colloidal crystal assembly. Nat Comms (accepted). 2019. doi: 10.1038/s41467-019-10031-4
  • Kawasaki T, Tanaka H. Formation of a crystal nucleus from liquid. Proc Natl Acad Sci USA. 2011;108:14036–14041. doi: 10.1073/pnas.1102231108
  • Mithen JP, Callison AJ, Sear RP. Nucleation of crystals that are mixed composites of all three polymorphs in the Gaussian core model. J Chem Phys. 2015;142:224505. doi: 10.1063/1.4922321
  • Varilly P, Angioletti-Uberti S, Mognetti BM, et al. A general theory of DNA-mediated and other valence-limited colloidal interactions. J Chem Phys. 2012;137:094108. doi: 10.1063/1.4748100
  • Mladek BM, Fornleitner J, Martinez-Veracoechea FJ, et al. Procedure to construct a multi-scale coarse-grained model of DNA-coated colloids from experimental data. Soft Matter. 2013;9:7342–7355. doi: 10.1039/c3sm50701g
  • Hurst SJ, Lytton-Jean AK, Mirkin CA. Maximizing DNA loading on a range of gold nanoparticle sizes. Anal Chem. 2006;78:8313–8318. doi: 10.1021/ac0613582
  • Macfarlane RJ, Thaner RV, Brown KA, et al. Importance of the DNA ‘bond’ in programmable nanoparticle crystallization. Proc Natl Acad Sci USA. 2014;111:14995–15000. doi: 10.1073/pnas.1416489111
  • Biancaniello PL, Kim AJ, Crocker JC. Colloidal interactions and self-assembly using DNA hybridization. Phys Rev Lett. 2005;94:058302. doi: 10.1103/PhysRevLett.94.058302
  • Dreyfus R, Leunissen ME, Sha R, et al. Aggregation-disaggregation transition of DNA-coated colloids: experiments and theory. Phys Rev E. 2010;81:041404. doi: 10.1103/PhysRevE.81.041404
  • Seifpour A, Dahl SR, Lin B, et al. Molecular simulation study of the assembly of DNA-functionalised nanoparticles: effect of DNA strand sequence and composition. Mol Simul. 2013;39:741–753. doi: 10.1080/08927022.2013.765569
  • Seifpour A, Dahl SR, Jayaraman A. Molecular simulation study of assembly of DNA-grafted nanoparticles: effect of bidispersity in DNA strand length. Mol Simul. 2014;40:1085–1098. doi: 10.1080/08927022.2013.845888
  • Macfarlane RJ, Jones MR, Senesi AJ, et al. Establishing the design rules for DNA-mediated programmable colloidal crystallization. Angew Chem Int Ed. 2010;49:4589–4592. doi: 10.1002/anie.201000633
  • Xiong H, van der Lelie D, Gang O. Phase behavior of nanoparticles assembled by DNA linkers. Phys Rev Lett. 2009;102:015504. doi: 10.1103/PhysRevLett.102.015504
  • Torikai M. Free-energy functional method for inverse problem of self assembly. J Chem Phys. 2015;142:144102. doi: 10.1063/1.4917175
  • Tkachenko AV. Morphological diversity of DNA-colloidal self-assembly. Phys Rev Lett. 2002;89:148303. doi: 10.1103/PhysRevLett.89.148303
  • Dreyfus R, Leunissen ME, Sha R, et al. Simple quantitative model for the reversible association of DNA coated colloids. Phys Rev Lett. 2009;102:048301. doi: 10.1103/PhysRevLett.102.048301
  • Martinez-Veracoechea FJ, Bozorgui B, Frenkel D. Anomalous phase behavior of liquid-vapor phase transition in binary mixtures of DNA-coated particles. Soft Matter. 2010;6:6136–6145. doi: 10.1039/c0sm00567c
  • de Pablo JJ. Coarse-grained simulations of macromolecules: from DNA to nanocomposites. Annu Rev Phys Chem. 2011;62:555–574. doi: 10.1146/annurev-physchem-032210-103458
  • Leunissen ME, Frenkel D. Numerical study of DNA-functionalized microparticles and nanoparticles: explicit pair potentials and their implications for phase behavior. J Chem Phys. 2011;134:084702. doi: 10.1063/1.3557794
  • Martinez-Veracoechea FJ, Mladek BM, Tkachenko AV, et al. Design rule for colloidal crystals of DNA-functionalized particles. Phys Rev Lett. 2011;107:045902. doi: 10.1103/PhysRevLett.107.045902
  • Tkachenko AV. Generic phase diagram of binary superlattices. Proc Natl Acad Sci USA. 2016;113:10269–10274. doi: 10.1073/pnas.1525358113
  • Scarlett RT, Ung MT, Crocker JC, et al. A mechanistic view of binary colloidal superlattice formation using DNA-directed interactions. Soft Matter. 2011;7:1912–1925. doi: 10.1039/c0sm00370k
  • Mognetti BM, Leunissen ME, Frenkel D. Controlling the temperature sensitivity of DNA-mediated colloidal interactions through competing linkages. Soft Matter. 2012;8:2213–2221. doi: 10.1039/c2sm06635a
  • Rogers WB, Crocker JC. Direct measurements of DNA-mediated colloidal interactions and their quantitative modeling. Proc Natl Acad Sci USA. 2011;108:15687–15692. doi: 10.1073/pnas.1109853108
  • Angioletti-Uberti S, Mognetti BM, Frenkel D. Theory and simulation of DNA-coated colloids: a guide for rational design. Phys Chem Chem Phys. 2016;18:6373–6393. doi: 10.1039/C5CP06981E
  • Lee OS, Schatz GC. Molecular dynamics simulation of DNA-functionalized gold nanoparticles. J Phys Chem C. 2009;113:2316–2321. doi: 10.1021/jp8094165
  • Knotts TA, Rathore N, Schwartz DC, et al. A coarse grain model for DNA. J Chem Phys. 2007;126:084901. doi: 10.1063/1.2431804
  • Padovan-Merhar O, Lara FV, Starr FW. Stability of DNA-linked nanoparticle crystals: effect of number of strands, core size, and rigidity of strand attachment. J Chem Phys. 2011;134:244701. doi: 10.1063/1.3596745
  • Knorowski C, Burleigh S, Travesset A. Dynamics and statics of DNA-programmable nanoparticle self-assembly and crystallization. Phys Rev Lett. 2011;106:215501. doi: 10.1103/PhysRevLett.106.215501
  • Li T, Sknepnek R, Olvera de la Cruz M. Thermally active hybridization drives the crystallization of DNA-functionalized nanoparticles. J Am Chem Soc. 2013;135:8535–8541. doi: 10.1021/ja312644h
  • Ding Y, Mittal J. Insights into DNA-mediated interparticle interactions from a coarse-grained model. J Chem Phys. 2014;141:184901. doi: 10.1063/1.4900891
  • Starr FW, Sciortino F. Model for assembly and gelation of four-armed DNA dendrimers. J Phys Condens Matter. 2006;18:L347–L353. doi: 10.1088/0953-8984/18/26/L02
  • Hsu CW, Sciortino F, Starr FW. Theoretical description of a DNA-linked nanoparticle self-assembly. Phys Rev Lett. 2010;105:055502. doi: 10.1103/PhysRevLett.105.055502
  • Theodorakis PE, Dellago C, Kahl G. A coarse-grained model for DNA-functionalized spherical colloids, revisited: effective pair potential from parallel replica simulations. J Chem Phys. 2013;138:025101. doi: 10.1063/1.4773920
  • Hsu CW, Largo J, Sciortino F, et al. Hierarchies of networked phases induced by multiple liquid-liquid critical points. Proc Natl Acad Sci USA. 2008;105:13711–13715. doi: 10.1073/pnas.0804854105
  • Dai W, Hsu CW, Sciortino F, et al. Valency dependence of polymorphism and polyamorphism in DNA-functionalized nanoparticles. Langmuir. 2010;26:3601–3608. doi: 10.1021/la903031p
  • Dai W, Kumar SK, Starr FW. Universal two-step crystallization of DNA-functionalized nanoparticles. Soft Matter. 2010;6:6130–6135. doi: 10.1039/c0sm00484g
  • Jenkins IC, Crocker JC, Sinno T. Interaction potentials from arbitrary multi-particle trajectory data. Soft Matter. 2015;11:6948–6956. doi: 10.1039/C5SM01233C
  • Yu Q, Zhang X, Hu Y, et al. Dynamic properties of DNA-programmable nanoparticle crystallization. ACS Nano. 2016;10:7485–7492. doi: 10.1021/acsnano.6b02067
  • Wang Y, Jenkins IC, McGinley JT, et al. Colloidal crystals with diamond symmetry at optical lengthscales. Nat Commun. 2017;8:14173. doi: 10.1038/ncomms14173
  • Shevchenko EV, Talapin DV, Kotov NA, et al. Structural diversity in binary nanoparticle superlattices. Nature. 2006;439:55–59. doi: 10.1038/nature04414
  • Nykypanchuk D, Maye MM, van der Lelie D, et al. DNA-guided crystallization of colloidal nanoparticles. Nature. 2008;451:549–552. doi: 10.1038/nature06560
  • Bodnarchuk MI, Kovalenko MV, Heiss W, et al. Energetic and entropic contributions to self-assembly of binary nanocrystal superlattices: temperature as the structure-directing factor. J Am Chem Soc. 2010;132:11967–11977. doi: 10.1021/ja103083q
  • Dijkstra M, VanRoij R, Evans R. Phase behavior and structure of binary hard-sphere mixtures. Phys Rev Lett. 1998;81:2268–2271. doi: 10.1103/PhysRevLett.81.2268
  • Dijkstra M, vanRoij R, Evans R. Phase diagram of highly asymmetric binary hard-sphere mixtures. Phys Rev E. 1999;59:5744–5771. doi: 10.1103/PhysRevE.59.5744
  • Filion L, Dijkstra M. Prediction of binary hard-sphere crystal structures. Phys Rev E. 2009;79:046714. doi: 10.1103/PhysRevE.79.046714
  • Seo SE, Girard M, Olvera de la Cruz M, et al. Non-equilibrium anisotropic colloidal single crystal growth with DNA. Nat Commun. 2018;9:4558. doi: 10.1038/s41467-018-06982-9
  • Laramy CR, Lopez-Rios H, O'Brien MN, et al. Controlled symmetry breaking in colloidal crystal engineering with DNA. ACS Nano. 2019;13:1412–1420.
  • Bartlett P, Campbell AI. Three-dimensional binary superlattices of oppositely charged colloids. Phys Rev Lett. 2005;95:128302. doi: 10.1103/PhysRevLett.95.128302
  • Hynninen A, Leunissen ME, van Blaaderen A, et al. CuAu structure in the restricted primitive model and oppositely charged colloids. Phys Rev Lett. 2006;96:018303. doi: 10.1103/PhysRevLett.96.018303
  • Leunissen ME, Christova CG, Hynninen AP, et al. Ionic colloidal crystals of oppositely charged particles. Nature. 2005;437:235–240. doi: 10.1038/nature03946
  • Mahynski NA, Zerze H, Hatch HW, et al. Assembly of multi-flavored two-dimensional colloidal crystals. Soft Matter. 2017;13:5397–5408. doi: 10.1039/C7SM01005B
  • Pretti E, Zerze H, Song M, et al. Assembly of three-dimensional binary superlattices from multi-flavored particles. Soft Matter. 2018;14:6303–6312. doi: 10.1039/C8SM00989A
  • Ben-Simon A, Eshet H, Rabani E. On the phase behavior of binary mixtures of nanoparticles. ACS Nano. 2013;7:978–986. doi: 10.1021/nn302712h
  • Travesset A. Binary nanoparticle superlattices of soft-particle systems. Proc Natl Acad Sci USA. 2015;112:9563–9567. doi: 10.1073/pnas.1504677112
  • Assoud L, Messina R, Löwen H. Stable crystalline lattices in two-dimensional binary mixtures of dipolar particles. Europhys Lett. 2007;80:48001. doi: 10.1209/0295-5075/80/48001
  • Kim AJ, Biancaniello PL, Crocker JC. Engineering DNA-mediated colloidal crystallization. Langmuir. 2006;22:1991–2001. doi: 10.1021/la0528955
  • Di Michele L, Varrato F, Kotar J, et al. Multistep kinetic self-assembly of DNA-coated colloids. Nat Commun. 2013;4:2007. doi: 10.1038/ncomms3007
  • Wang Y, Wang Y, Zheng X, et al. Synthetic strategies toward DNA-coated colloids that crystallize. J Am Chem Soc. 2015;137:10760–10766. doi: 10.1021/jacs.5b06607
  • Wang Y, Wang Y, Zheng X, et al. Crystallization of DNA-coated colloids. Nat Commun. 2015;6:7253. doi: 10.1038/ncomms8253
  • Hoover WG, Hindmarsh AC, Holian BL. Number dependence of small-crystal thermodynamic properties. I. J Chem Phys. 1972;57:1980–1985. doi: 10.1063/1.1678518
  • Hu H, Ruiz PS, Ni R. Entropy stabilizes floppy crystals of mobile DNA-coated colloids. Phys Rev Lett. 2018;120:048003. doi: 10.1103/PhysRevLett.120.048003
  • Frenkel D, Ladd AJC. New Monte Carlo method to compute the free energy of arbitrary solids. Application to the fcc and hcp phases of hard spheres. J Chem Phys. 1984;81:3188–3193. doi: 10.1063/1.448024
  • Polson JM, Trizac E, Pronk S, et al. Finite-size corrections to the free energies of crystalline solids. J Chem Phys. 2000;112:5339–5342. doi: 10.1063/1.481102
  • Vega C, Noya EG. Revisiting the Frenkel-Ladd method to compute the free energy of solids: the Einstein molecule approach. J Chem Phys. 2007;127:154113. doi: 10.1063/1.2790426
  • Nguyen M, Vaikuntanathan S. Design principles for non-equilibrium self-assembly. Proc Natl Acad Sci USA. 2015;113:14231–14236. doi: 10.1073/pnas.1609983113
  • Sanz E, Valeriani C, Frenkel D, et al. Evidence for out-of-equilibrium crystal nucleation in suspensions of oppositely charged colloids. Phys Rev Lett. 2007;99:055501. doi: 10.1103/PhysRevLett.99.055501
  • Kim AJ, Scarlett R, Biancaniello PL, et al. Probing interfacial equilibration in microsphere crystals formed by DNA-directed assembly. Nat Mater. 2009;8:52–55. doi: 10.1038/nmat2338
  • Jain A, Errington JR, Truskett TM. Communication: phase behavior of materials with isotropic interactions designed by inverse strategies to favor diamond and simple cubic lattice ground states. J Chem Phys. 2013;139:141102. doi: 10.1063/1.4825173
  • Jain A, Errington JR, Truskett TM. Dimensionality and design of isotropic interactions that stabilize honeycomb, square, simple cubic, and diamond lattices. Phys Rev X. 2014;4:031049.
  • Piñeros WD, Jadrich RB, Truskett TM. Design of two-dimensional particle assemblies using isotropic pair interactions with an attractive well. AIP Adv. 2017;7:115307. doi: 10.1063/1.5005954
  • Piñeros WD, Lindquist BA, Jadrich RB. Inverse design of multicomponent assemblies. J Chem Phys. 2018;148:104509. doi: 10.1063/1.5021648
  • Chao H, Riggleman RA. Inverse design of grafted nanoparticles for targeted self-assembly. Mol Syst Des Eng. 2018;3:214–222. doi: 10.1039/C7ME00081B

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.