313
Views
7
CrossRef citations to date
0
Altmetric
Articles

Exploring the effect of mono- and di-fluorinated triphenylamine-based molecules as electron donors for dye-sensitised solar cells

, &
Pages 41-53 | Received 08 May 2019, Accepted 10 Sep 2019, Published online: 25 Sep 2019

References

  • Chapin DM, Fuller C, Pearson G. A new silicon p-n junction photocell for converting solar radiation into electrical power. J Appl Phys. 1954;25(5):676–677. doi: 10.1063/1.1721711
  • O’regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature. 1991;353(6346):737–740. doi: 10.1038/353737a0
  • Kakiage K, Aoyama Y, Yano T, et al. Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem Commun. 2015;51(88):15894–15897. doi: 10.1039/C5CC06759F
  • Mandal S, Kushwaha S, Mukkamala R, et al. Metal-free bipolar/octupolar organic dyes for DSSC application: a combined experimental and theoretical approach. Org Electron. 2016;36:177–184. doi: 10.1016/j.orgel.2016.06.009
  • Lin L-Y, Tsai C-H, Lin F, et al. 2, 1, 3-Benzothiadiazole-containing donor–acceptor–acceptor dyes for dye-sensitized solar cells. Tetrahedron. 2012;68(36):7509–7516. doi: 10.1016/j.tet.2012.05.052
  • Panneerselvam M, Kathiravan A, Solomon RV, et al. The role of π-linkers in tuning the optoelectronic properties of triphenylamine derivatives for solar cell applications–A DFT/TDDFT study. Phys Chem Chem Phys. 2017;19(8):6153–6163. doi: 10.1039/C6CP07768D
  • Zhu H, Li W, Wu Y, et al. Insight into benzothiadiazole acceptor in D–A− π–A configuration on photovoltaic performances of dye-sensitized solar cells. ACS Sustain Chem Eng. 2014;2(4):1026–1034. doi: 10.1021/sc500035j
  • Katono M, Wielopolski M, Marszalek M, et al. Effect of extended π-conjugation of the donor structure of organic D–A− π–A dyes on the photovoltaic performance of dye-sensitized solar cells. J Phys Chem C. 2014;118(30):16486–16493. doi: 10.1021/jp411504p
  • Namuangruk S, Fukuda R, Ehara M, et al. D–D− π–A-type organic dyes for dye-sensitized solar cells with a potential for direct electron injection and a high extinction coefficient: synthesis, characterization, and theoretical investigation. J Phys Chem C. 2012;116(49):25653–25663. doi: 10.1021/jp304489t
  • Liu W-H, Wu I-C, Lai C-H, et al. Simple organic molecules bearing a 3, 4-ethylenedioxythiophene linker for efficient dye-sensitized solar cells. Chem Commun. 2008;41:5152–5154. doi: 10.1039/b808535h
  • Lin JT, Chen P-C, Yen Y-S, et al. Organic dyes containing furan moiety for high-performance dye-sensitized solar cells. Org Lett. 2008;11(1):97–100. doi: 10.1021/ol8025236
  • Lu X, Zhou G, Wang H, et al. Near infrared thieno [3, 4-b] pyrazine sensitizers for efficient quasi-solid-state dye-sensitized solar cells. Phys Chem Chem Phys. 2012;14(14):4802–4809. doi: 10.1039/c2cp40441a
  • Shi J, Chen J, Chai Z, et al. High performance organic sensitizers based on 11, 12-bis (hexyloxy) dibenzo [a, c] phenazine for dye-sensitized solar cells. J Mater Chem. 2012;22(36):18830–18838. doi: 10.1039/c2jm33833e
  • Haid S, Marszalek M, Mishra A, et al. Significant improvement of dye-sensitized solar cell performance by small structural modification in π-conjugated donor–acceptor dyes. Adv Funct Mater. 2012;22(6):1291–1302. doi: 10.1002/adfm.201102519
  • Chen D-Y, Hsu Y-Y, Hsu H-C, et al. Organic dyes with remarkably high absorptivity; all solid-state dye sensitized solar cell and role of fluorine substitution. Chem Commun. 2010;46(29):5256–5258. doi: 10.1039/c0cc00808g
  • Wang X, Yang J, Yu H, et al. A benzothiazole–cyclopentadithiophene bridged D–A–π–A sensitizer with enhanced light absorption for high efficiency dye-sensitized solar cells. Chem Commun. 2014;50(30):3965–3968. doi: 10.1039/C4CC00577E
  • Chen B-S, Chen D-Y, Chen C-L, et al. Donor–acceptor dyes with fluorine substituted phenylene spacer for dye-sensitized solar cells. J Mater Chem. 2011;21(6):1937–1945. doi: 10.1039/C0JM02433C
  • Frisch MJ, Trucks G. W, Schlegel H. B, et al. 2009. Gaussian, Inc., Wallingford, CT, 2009.
  • Yanai T, Tew DP, Handy NC. A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett. 2004;393(1–3):51–57. doi: 10.1016/j.cplett.2004.06.011
  • Delley B. From molecules to solids with the DMol 3 approach. J Chem Phys. 2000;113(18):7756–7764. doi: 10.1063/1.1316015
  • Pastore M, De Angelis F. Modeling materials and processes in dye-sensitized solar cells: understanding the mechanism, improving the efficiency. In: Beljonne D, Cornil J, editors. Multiscale modelling of organic and hybrid photovoltaics. Berlin: Springer; 2013. p. 151–236.
  • Shklover V, Nazeeruddin M-K, Zakeeruddin SM, et al. Structure of nanocrystalline TiO2 powders and precursor to their highly efficient photosensitizer. Chem Mater. 1997;9(2):430–439. doi: 10.1021/cm950502p
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(18):3865–3868. doi: 10.1103/PhysRevLett.77.3865
  • Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B. 1976;13(12):5188–5192. doi: 10.1103/PhysRevB.13.5188
  • Biswas AK, Das A, Ganguly B. Can fused-pyrrole rings act as better [small pi]-spacer units than fused-thiophene in dye-sensitized solar cells? A computational study. New J Chem. 2016;40(11):9304–9312. doi: 10.1039/C6NJ02040B
  • Chitpakdee C, Namuangruk S, Khongpracha P, et al. Theoretical studies on electronic structures and photophysical properties of anthracene derivatives as hole-transporting materials for OLEDs. Spectrochim Acta, Part A. 2014;125:36–45. doi: 10.1016/j.saa.2013.12.111
  • Wazzan N, El-Shishtawy RM, Irfan A. DFT and TD–DFT calculations of the electronic structures and photophysical properties of newly designed pyrene-core arylamine derivatives as hole-transporting materials for perovskite solar cells. Theor Chem Acc. 2017;137(1):9. doi: 10.1007/s00214-017-2183-y
  • Chaitanya K, Ju X-H, Heron BM. Can elongation of the π-system in triarylamine derived sensitizers with either benzothiadiazole and/or ortho-fluorophenyl moieties enrich their light harvesting efficiency? – a theoretical study. RSC Adv. 2015;5(6):3978–3998. doi: 10.1039/C4RA09914A
  • Chen J, Gao Y, Xu Y, et al. Theoretical study of novel porphyrin D-π-A conjugated organic dye sensitizer in solar cells. Mater Chem Phys. 2019;225:417–425. doi: 10.1016/j.matchemphys.2018.12.105
  • Gorelsky SI. Program for molecular orbital analysis. 2015.
  • Gorelsky SI, Lever ABP. Electronic structure and spectra of ruthenium diimine complexes by density functional theory and INDO/S. Comparison of the two methods. J Organomet Chem. 2001;635:187–196. doi: 10.1016/S0022-328X(01)01079-8
  • Abdi OK, Fischer BJD, Al-Faouri T, et al. Bipodal dyes with bichromic triphenylamine architectures for use in dye-sensitized solar cell applications. RSC Adv. 2018;8(74):42424–42428. doi: 10.1039/C8RA03213K
  • Hilal R, et al. Time dependent – density functional theory characterization of organic dyes for dye-sensitized solar cells. Mol Simul. 2017;43(18):1–9.
  • Li P, Cui Y, Song C, et al. A systematic study of phenoxazine-based organic sensitizers for solar cells. Dyes Pigm. 2017;137:12–23. doi: 10.1016/j.dyepig.2016.09.060
  • Zhang G, Bai Y, Li R, et al. Employ a bisthienothiophene linker to construct an organic chromophore for efficient and stable dye-sensitized solar cells. Energy Environ Sci. 2009;2(1):92–95. doi: 10.1039/B817990E
  • Mandal S, Rao S, Ramanujam K. Understanding the photo-electrochemistry of metal-free di and tri substituted thiophene-based organic dyes in dye-sensitized solar cells using DFT/TD-DFT studies. Ionics (Kiel). 2017;23(12):3545–3554. doi: 10.1007/s11581-017-2158-y
  • Abdullah MI, Janjua MRSA, Mahmood A, et al. Quantum chemical designing of efficient sensitizers for dye sensitized solar cells. Bull Korean Chem Soc. 2013;34(7):2093–2098. doi: 10.5012/bkcs.2013.34.7.2093
  • Shalabi AS, El Mahdy AM, Assem MM, et al. Theoretical characterisation of highly efficient dye-sensitised solar cells. Mol Phys. 2014;112(1):22–34. doi: 10.1080/00268976.2013.795249
  • Shalabi AS, El Mahdy AM, Taha HO, et al. The effects of macrocycle and anchoring group replacements on the performance of porphyrin based sensitizer: DFT and TD-DFT study. J Phys Chem Solids. 2015;76:22–33. doi: 10.1016/j.jpcs.2014.08.002
  • Frisch MJ. Gaussian 09 programmer’s reference. 2009, Gaussian.
  • Ali BA, Allam NK. Propping the optical and electronic properties of potential photo-sensitizers with different π-spacers: TD-DFT insights. Spectrochim Acta, Part A. 2018;188:237–243. doi: 10.1016/j.saa.2017.07.009
  • Le Bahers T, Adamo C, Ciofini I. A qualitative index of spatial extent in charge-transfer excitations. J Chem Theory Comput. 2011;7(8):2498–2506. doi: 10.1021/ct200308m
  • Le Bahers T, Brémond E, Ciofini I, et al. The nature of vertical excited states of dyes containing metals for DSSC applications: insights from TD-DFT and density based indexes. Phys Chem Chem Phys. 2014;16(28):14435–14444. doi: 10.1039/c3cp55032j
  • Andijani N, Wazzan NA. The effect of electron-donating substituents on tuning the nonlinear optical properties of pyrene-core arylamine derivatives: DFT calculations. Results Phys. 2018;11:605–616. doi: 10.1016/j.rinp.2018.10.002
  • Hosseinzadeh E, Hadipour NL, Parsafar G. A computational investigation on the influence of different π spacer groups in the bithiazole-based organic dye sensitizers on the short-circuit photocurrent densities of dye-sensitized solar cells. J Photochem Photobiol, A. 2017;333:70–78. doi: 10.1016/j.jphotochem.2016.10.010
  • Wazzan N, Irfan A. Theoretical study of triphenylamine-based organic dyes with mono-, di-, and tri-anchoring groups for dye-sensitized solar cells. Org Electron. 2018;63:328–342. doi: 10.1016/j.orgel.2018.09.039
  • Lin L-Y, Yeh M-H, Lee C-P, et al. Insights into the co-sensitizer adsorption kinetics for complementary organic dye-sensitized solar cells. J Power Sources. 2014;247:906–914. doi: 10.1016/j.jpowsour.2013.08.127
  • Scharber MC, Mühlbacher D, Koppe M, et al. Design rules for donors in Bulk-Heterojunction solar cells—towards 10% energy-conversion efficiency. Adv Mater. 2006;18(6):789–794. doi: 10.1002/adma.200501717
  • Gratzel M. Recent advances in sensitized mesoscopic solar cells. Acc Chem Res. 2009;42(11):1788–1798. doi: 10.1021/ar900141y
  • Marcus RA. On the theory of oxidation-reduction reactions involving electron transfer. I. J Chem Phys. 1956;24(5):966–978. doi: 10.1063/1.1742723
  • Marcus RA, Sutin N. Electron transfers in chemistry and biology. Biochim Biophys Acta, Rev Bioenerg. 1985;811(3):265–322. doi: 10.1016/0304-4173(85)90014-X
  • Wazzan N, Safi Z. Effect of number and position of methoxy substituents on fine-tuning the electronic structures and photophysical properties of designed carbazole-based hole-transporting materials for perovskite solar cells: DFT calculations. Arabian J Chem. 2018;12(1):1–20.
  • Taniya M, Asmi S, Niaz S, et al. Computational studies on optoelectronic and charge transfer properties of some perylene-based donor-π-acceptor systems for dye sensitized solar cell applications. Int J Quantum Chem. 2017;117(5):e25332. doi: 10.1002/qua.25332
  • Chen P, Yum JH, Angelis FD, et al. High open-circuit voltage solid-state dye-sensitized solar cells with organic dye. Nano Lett. 2009;9(6):2487–2492. doi: 10.1021/nl901246g
  • Pastore M, De Angelis F. Aggregation of organic dyes on TiO2 in dye-sensitized solar cells models: an ab initio investigation. ACS Nano. 2009;4(1):556–562. doi: 10.1021/nn901518s
  • Prajongtat P, Suramitr S, Nokbin S, et al. Density functional theory study of adsorption geometries and electronic structures of azo-dye-based molecules on anatase TiO2 surface for dye-sensitized solar cell applications. J Mol Graphics Modell. 2017;76:551–561. doi: 10.1016/j.jmgm.2017.06.002
  • Vittadini A, Casarin M, Selloni A. Chemistry of and on TiO2-anatase surfaces by DFT calculations: a partial review. Theor Chem Acc. 2007;117(5-6):663–671. doi: 10.1007/s00214-006-0191-4
  • Salimi Beni A, Zarandi M, Hosseinzadeh B, et al. Density functional theory study of carbazole dyes: potential application of carbazole dyes in dye-sensitized solar cells. J Mol Struct. 2018;1164:155–163. doi: 10.1016/j.molstruc.2018.02.094
  • Fu Y, Lu T, Xu Y, et al. Theoretical screening and design of SM315-based porphyrin dyes for highly efficient dye-sensitized solar cells with near-IR light harvesting. Dyes Pigm. 2018;155:292–299. doi: 10.1016/j.dyepig.2018.03.045

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.