138
Views
8
CrossRef citations to date
0
Altmetric
Articles

Square-well mixtures revisited: computer simulation, mixing rules and one-fluid theory

&
Pages 102-110 | Received 28 May 2019, Accepted 19 Sep 2019, Published online: 16 Oct 2019

References

  • Solana JR. Perturbation theories for the thermodynamic properties of fluids and solids. Boca Raton (FL): CRC Press; 2013.
  • Zwanzig RW. High-temperature equation of state by a perturbation method. I. Non-polar gases. J Chem Phys. 1954;22:1420–1426. doi: 10.1063/1.1740409
  • Carnahan NF, Starling KE. Equation of state for nonattracting rigid spheres. J Chem Phys. 1969;51:635–636. doi: 10.1063/1.1672048
  • Wertheim MS. Exact solution of the Percus-Yevick integral equation for hard spheres. Phys Rev Lett. 1963;10:321–323. doi: 10.1103/PhysRevLett.10.321
  • Verlet L, Weis JJ. Equilibrium theory of simple liquids. Phys Rev A. 1972;5:939–952. doi: 10.1103/PhysRevA.5.939
  • Bravo Yuste S, Santos A. Radial distribution function for hard spheres. Phys Rev A. 1991;43:5418–5423. doi: 10.1103/PhysRevA.43.5418
  • Tang Y, Lu BCY. Improved expressions for the radial distribution function of hard spheres. J Chem Phys. 1995;103:7463–7470. doi: 10.1063/1.470317
  • Barker JA, Henderson D. Perturbation theory and equation of state for fluids: the square-well potential. J Chem Phys. 1967;47:2856–2861. doi: 10.1063/1.1712308
  • Smith WR, Henderson D, Barker JA. Approximate evaluation of the second-order term in the perturbation theory of fluids. J Chem Phys. 1970;53:508–515. doi: 10.1063/1.1674017
  • Largo J, Solana JR. Theory and computer simulation of the first- and second-order perturbative contributions to the free energy of square-well fluids. Mol Simul. 2003;29:363–371. doi: 10.1080/0892702031000117180
  • Zhang BJ. Calculating thermodynamic properties from perturbation theory I. An analytic representation of square-well potential hard-sphere perturbation theory. Fluid Phase Equilib. 1999;154:1–10. doi: 10.1016/S0378-3812(98)00431-2
  • Paricaud P. A general perturbation approach for equation of state development: applications to simple fluids, ab initio potentials, and fullerenes. J Chem Phys. 2006;124:15450515451154505–1 –154505–17. doi: 10.1063/1.2181979
  • Barker JA, Henderson D. What is ‘liquid’? Understanding the states of matter. Rev Mod Phys. 1976;48:587–671. doi: 10.1103/RevModPhys.48.587
  • Espíndola-Heredia R, Malijevsky A. Optimized equation of the state of the square-well fluid of variable range based on a fourth-order free-energy expansion. J Chem Phys. 2009;130:024509-1–024509-13. doi: 10.1063/1.3054361
  • Pavlyukhin YT. Thermodynamic perturbation theory of simple liquids: Monte Carlo simulation of a hard sphere system and the Helmholtz free energy of SW fluids. J Struct Chem. 2012;53:476–486. doi: 10.1134/S0022476612030092
  • Zhou S, Solana JR. The first three coefficients in the high temperature series expansion of free energy for simple potential models with hard-sphere cores and continuous tails. J Phys Chem B. 2013;117:9305–9313. doi: 10.1021/jp405406f
  • Largo L, Solana JR. Thermodynamic properties of a hard-core Lennard-Jones fluid from computer simulation and the coupling parameter series expansion. Mol Phys. 2016;114:2391–2399. doi: 10.1080/00268976.2016.1154618
  • Zhou S, Solana JR. Monte Carlo and theoretical calculations of the first four perturbation coefficients in the high temperature series expansion of the free energy for discrete and core-softened potential models. J Chem Phys. 2013;138:244115-1–244115-8.
  • Sastre F, Moreno-Hilario E, Sotelo-Serna MG, et al. Microcanonical-ensemble computer simulation of the high-temperature expansion coefficients of the Helmholtz free energy of a square-well fluid. Mol Phys. 2017;116:351–360. doi: 10.1080/00268976.2017.1392051
  • Gil-Villegas A, del Río F, Benavides AL. Deviations from corresponding-states behavior in the vapor-liquid equilibrium of the square-well fluid. Fluid Phase Equil. 1996;119:97–112. doi: 10.1016/0378-3812(95)02851-X
  • Leland TW, Rowlinson JS, Sather GA. Statistical thermodynamics of mixtures of molecules of different sizes. Trans Faraday Soc. 1968;64:1447–1460. doi: 10.1039/tf9686401447
  • Mansoori GA, Leland TW. Statistical thermodynamics of mixtures. A new version for the theory of conformal solution. J Chem Soc Faraday Trans II. 1972;68:320–344. doi: 10.1039/f29726800320
  • Vidales A, Benavides AL, Gil-Villegas A. Perturbation theory for mixtures of discrete potential fluids. Mol Phys. 2001;99:703–710. doi: 10.1080/00268970010018846
  • Longuet-Higgins HC. The statistical thermodynamics of multicomponent systems. Proc Roy Soc A. 1951;205:247–269. doi: 10.1098/rspa.1951.0028
  • Smith WR. Perturbation theory and the one-fluid corresponding states theories for fluid mixtures. Can J Chem Eng. 1972;50:271–274. doi: 10.1002/cjce.5450500223
  • Cook D, Rowlinson JS. Deviations from the principle of corresponding states. Proc Roy Soc A. 1953;219:405–418. doi: 10.1098/rspa.1953.0156
  • Boublík T. Hard-sphere equation of state. J Chem Phys. 1970;53:471–472. doi: 10.1063/1.1673824
  • Mansoori GA, Carnahan NF, Starling KE, et al. Equilibrium thermodynamic properties of the mixture of hard spheres. J Chem Phys. 1971;54:1523–1525. doi: 10.1063/1.1675048
  • Deiters UK. Density-dependent mixing rules for the calculation of fluid phase equilibria at high pressures. Fluid Phase Equilib. 1987;33:267–293. doi: 10.1016/0378-3812(87)85041-0
  • Ely JF. Improved mixing rules for one-fluid conformal solution calculations. In: Chao KC, Robinson RL editors. Equations of state: theories and applications. American Chemical Society; 1986. p. 331–350. (ACS Symposium Series Vol. 300).
  • Jonah DA. On the vdW1 mixing rules: simple modifications leading to more exact forms. J Chem Phys. 1992;97:3867–3868. doi: 10.1063/1.462921
  • Noro MG, Frenkel D. Extended corresponding-states behavior for particles with variable range attractions. J Chem Phys. 2000;113:2941–2944. doi: 10.1063/1.1288684
  • Rouha M, Nezbeda I. Second virial coefficients: a route to combining rules? Mol Phys. 2017;115:1191–1199. doi: 10.1080/00268976.2016.1263763
  • Largo J, Miller MA, Sciortino F. The vanishing limit of the square-well fluid: the adhesive hard-sphere model as a reference system. J Chem Phys. 2008;128:134513-1–134513-5. doi: 10.1063/1.2883696
  • Barošová M, Malijevský M, Labík S. Computer simulation of the chemical potentials of binary hard-sphere mixtures. Mol Phys. 1996;87:423–439. doi: 10.1080/00268979600100281

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.