154
Views
6
CrossRef citations to date
0
Altmetric
Articles

Molecular dynamics simulation study of Glycine tip-functionalisation of single-walled carbon nanotubes as emerging nanovectors for the delivery of anticancer drugs

, , &
Pages 111-120 | Received 23 Dec 2017, Accepted 02 Oct 2019, Published online: 31 Oct 2019

References

  • You J, Hu FQ, Du YZ, et al. Improved cytotoxicity of doxorubicin by enhancing its nuclear delivery mediated via nanosized micelles. Nanotechnology. 2008;9:255103–255111. doi: 10.1088/0957-4484/19/25/255103
  • Luo Y, Ziebell MR, Prestwich GD. A hyaluronic acid-taxol antitumor bioconjugate targeted to cancer cells. Biomacromolecules. 2000;1:208–218. doi: 10.1021/bm000283n
  • Madaan K, Kumar S, Poonia N, et al. Dendrimers in drug delivery and targeting: drug–dendrimer interactions and toxicity issues. J Pharm Bioallied Sci. 2014;6:139–150. doi: 10.4103/0975-7406.130965
  • Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56–58. doi: 10.1038/354056a0
  • Bethune DS, Kiang CH, de Vries MS, et al. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature. 1993;363:605–607. doi: 10.1038/363605a0
  • Bianco A, Kostarelos K, Prato M. Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol. 2005;9:674–679. doi: 10.1016/j.cbpa.2005.10.005
  • Lacerda L, Bianco A, Prato M, et al. Carbon nanotubes as nanomedicines: from toxicology to pharmacology. Adv Drug Delivery Rev. 2006;58:1460–1470. doi: 10.1016/j.addr.2006.09.015
  • Pushparaj VL, Shaijumon M, Kumar A, et al. Flexible energy storage devices based on nanocomposite paper. PNAS. 2007;104:13574–13577. doi: 10.1073/pnas.0706508104
  • Vardharajula S, Ali SZ, Tiwari PM, et al. Functionalized carbon nanotubes: biomedical applications. Int J Nanomedicine. 2012;7:5361–5374.
  • Chen Z, Pierre D, He H, et al. Adsorption behavior of epirubicin hydrochloride on carboxylated carbon nanotubes. Int J Pharm. 2011;405:153–161.
  • Gallo M, Favila A, Glossman-Mitnik D. DFT studies of functionalized carbon nanotubes and fullerenes as nanovectors for drug delivery of antitubercular compounds. Chem Phys Lett. 2007;447:105–109.
  • Khatti Z, Hashemianzadeh SM, Shafiei SA. A molecular study on drug delivery system based on carbon nanotube compared to silicon carbide nanotube for encapsulation of platinum-based anticancer drug. Adv Pharm Bull. 2018;8(1):163. doi: 10.15171/apb.2018.020
  • Arsawang U, Saengsawang O, Rungrotmongkol T, et al. How do carbon nanotubes serve as carriers for gemcitabine transport in a drug delivery system? J Mol Graph Model. 2011;29:591–596. doi: 10.1016/j.jmgm.2010.11.002
  • Panczyk T, Wolski P, Lajtar L. Coadsorption of doxorubicin and selected dyes on carbon nanotubes. theoretical investigation of potential application as a pH-controlled drug delivery system. Langmuir. 2016;32(19):4719–4728. doi: 10.1021/acs.langmuir.6b00296
  • Khatti Z, Hashemianzadeh SM. Investigation of thermodynamic and structural properties of drug delivery system based on carbon nanotubes as a carboplatin drug carrier by molecular dynamics simulations. J Incl Phenom Macrocycl Chem. 2015;83(1–2):131–140. doi: 10.1007/s10847-015-0549-0
  • Hashemzadeh H, Raissi H. The functionalization of carbon nanotubes to enhance the efficacy of the anticancer drug paclitaxel: a molecular dynamics simulation study. J Mol Model. 2017;23:222–232. doi: 10.1007/s00894-017-3391-z
  • Li Z, Tozer T, Alisaraie L. Molecular dynamics studies for optimization of noncovalent loading of vinblastine on single-walled carbon nanotube. J Phys Chem C. 2016;120:4061–4070. doi: 10.1021/acs.jpcc.5b10646
  • Kamel M, Raissi H, Morsali A. Theoretical study of solvent and co-solvent effects on the interaction of flutamide anticancer drug with carbon nanotube as a drug delivery system. J Mol Liq. 2017;248:490–500. doi: 10.1016/j.molliq.2017.10.078
  • Kamel M, Raissi H, Morsali A, et al. Assessment of the adsorption mechanism of flutamide anticancer drug on the functionalized single-walled carbon nanotube surface as a drug delivery vehicle: an alternative theoretical approach based on DFT and MD. Appl Surf Sci. 2018;434:492–503. doi: 10.1016/j.apsusc.2017.10.165
  • Park JB. The effects of fulvestrant, an estrogen receptor antagonist, on the proliferation, differentiation and mineralization of osteoprecursor cells. Mol Med. 2012;7:555–558.
  • Untch M, Jackisch C. Exemestane in early breast cancer: a review. Ther Clin Risk Manag. 2008;4:1295–1304. doi: 10.2147/TCRM.S4007
  • Mouridsen H, Giobbie-Hurder A, Goldhirsch A. Letrozole therapy alone or in sequence with tamoxifen in women with breast cancer. N Engl J Med. 2009;361:766–776. doi: 10.1056/NEJMoa0810818
  • Shaitan KV, Tourleigh YV, Golik DN, et al. Computer-aided molecular design of nanocontainers for inclusion and targeted delivery of bioactive compounds. J Drug Deliv Sci Technol. 2006;16(4):253–258. doi: 10.1016/S1773-2247(06)50047-4
  • Zare B, Akhavan M, Dehpour AR. Insertion of thiazolidinediones into carbon nanotube. In Proceedings of World Academy of Science, Engineering and Technology (No. 66). World Academy of Science, Engineering and Technology; 2012.
  • Rungnim C, Arsawang U, Rungrotmongkol T, et al. Molecular dynamics properties of varying amounts of the anticancer drug gemcitabine inside an open-ended single-walled carbon nanotube. Chem Phys Lett. 2012;550:99–103. doi: 10.1016/j.cplett.2012.08.050
  • Mortazavifar A, Raissi H, Shahabi M. Comparative prediction of binding affinity of Hydroxyurea anti-cancer to boron nitride and carbon nanotubes as smart targeted drug delivery vehicles. J Biomol Struct Dyn. 2019;37(18):4852–4862. doi: 10.1080/07391102.2019.1567385
  • Balamurugan K, Baskar P, Mahesh Kumar R, et al. Interaction of carbon nanotube with ethylene glycol–water binary mixture: a molecular dynamics and density functional theory investigation. J Phys Chem C. 2012;116(7):4365–4373. doi: 10.1021/jp206882f
  • Jorgensen WL, Chandrasekhar J, Madura JD, et al. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79:926–935. doi: 10.1063/1.445869
  • Hess B, Kutzner C, van der Spoel D, et al. GROMACS 4: algorithms for highly efficient, load-balanced, and scalablemolecular simulation. J Chem Theory Comput. 2008;4:435–447. doi: 10.1021/ct700301q
  • Brooks BR, Brooks CL, MacKerell AD, Nilsson L, Petrella RJ, Roux B, Caflisch A. CHARMM: the biomolecular simulation program. J Comput Chem. 2009;30(10):1545–1614. doi: 10.1002/jcc.21287
  • Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity-rescaling. J Chem Phys. 2007;126:014101. doi: 10.1063/1.2408420
  • Berendsen HJ, Postma JV, van Gunsteren WF, DiNola AR, Haak JR. Molecular dynamics with coupling to an external bath. J Chem Phys. 1984;81:3684–3690.
  • Zoete V, Cuendet MA, Grosdidier A, et al. Swissparam: a fast force field generation tool for small organic molecules. J Comput Chem. 2011;32:2359–2368. doi: 10.1002/jcc.21816
  • Nanotube modeler. Version 1.7.3. J Crystal Soft Ed. 2004–2005. Available from: http://www.jcrystal.com/products/wincnt/
  • Darden T, York D, Pedersen L. Particlemesh Ewald-an N. Log(N)method for Ewald sums in large systems. J Chem Phys. 1993;98:10089. doi: 10.1063/1.464397
  • Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graphics. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5
  • Kumari R, Kumar R. Lynn AG. Mmpbsa – a GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model. 2014;54:1951–1962. doi: 10.1021/ci500020m
  • Krygowski TM, Cyranski MK. Separation of the energetic and geometric contributions to the aromaticity of p-electron carbocyclics. Tetrahedron. 1996;52:1713–1722. doi: 10.1016/0040-4020(95)01007-6
  • Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 03, revision C.02 (or D.01). Pittsburgh (PA): Gaussian Inc; 2013.
  • van der Spoel D, Lindahl E, Hess B, et al. User manual. Version, 3; 2004. Available from: www.gromacs.org
  • Qiang L, Li Z, Zhao T, et al. Atomic-scale interactions of the interface between chitosan and Fe3 O4. Colloids Surf A Physicochem Eng Asp. 2013;419:125–132. doi: 10.1016/j.colsurfa.2012.11.055
  • Torrie GM, Valleau JP. Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J Comp Phys. 1977;23:187–199. doi: 10.1016/0021-9991(77)90121-8
  • Kumar S, Bouzida D, Swendsen RH, et al. Liquid-liquid transition in ST2 water. J Comput Chem. 1992;13:1011–1021. doi: 10.1002/jcc.540130812

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.