483
Views
9
CrossRef citations to date
0
Altmetric
Articles

Size and shape dependent thermal properties of rutile TiO2 nanoparticles: a molecular dynamics simulation study

, , &
Pages 341-349 | Received 10 Dec 2018, Accepted 18 Oct 2019, Published online: 31 Jan 2020

References

  • Ranade MR, Navrotsky A, Zhang HZ, et al. Energetics of nanocrystalline TiO2. Proc Natl Acad Sci. [Internet]. 2002;99:6476–6481. DOI:10.1073/pnas.251534898
  • Salvador A, Pascual-Martí MC, Adell JR, et al. Analytical methodologies for atomic spectrometric determination of metallic oxides in UV sunscreen creams. J Pharm Biomed Anal. 2000;22:301–306. doi: 10.1016/S0731-7085(99)00286-1
  • Zallen R, Moret MP. The optical absorption edge of brookite TiO2. Solid State Commun. 2006;137:154–157. doi: 10.1016/j.ssc.2005.10.024
  • Braun JH, Baidins A, Marganski RE. TiO2 pigment technology: a review. Prog Org Coatings. 1992;20:105–138. doi: 10.1016/0033-0655(92)80001-D
  • Gauthier S, Reisberg B, Zaudig M, et al. Photoelectrochemical cells. Nature. 2006;414:338–344.
  • Hagfeldt A, Grätzel M. Light-induced redox reactions in nanocrystalline systems. Chem Rev. 1995;95:49–68. doi: 10.1021/cr00033a003
  • Li L, Yan J, Wang T, et al. Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production. Nat Commun. [Internet]. 2015;6:5881. Available from: http://www.nature.com/doifinder/10.1038/ncomms6881
  • Dai L, Sow CH, Lim CT, et al. Numerical investigations into the tensile behavior of TiO2 nanowires : structural Deformation, mechanical properties, and size effects. Nano Lett. 2009;9:576–582. doi: 10.1021/nl8027284
  • Selvin TP, Kuruvilla J, Sabu T. Mechanical properties of titanium dioxide-filled polystyrene microcomposites. Mater Lett. 2004;58:281–289. doi: 10.1016/S0167-577X(03)00470-1
  • Naicker PK, Cummings PT, Zhang H, et al. Characterization of titanium dioxide nanoparticles using molecular dynamics simulations. J Phys Chem B [Internet]. 2005;109:15243–15249. Available from: http://pubs3.acs.org/acs/journals/doilookup?in_doi=10.1021/jp050963q
  • Volokitin Y, Sinzig J, de Jongh LJ, et al. Quantum-size effects in the thermodynamic properties of metallic nanoparticles. Nature [Internet]. 1996;384:621–623. Available from: http://www.nature.com/doifinder/10.1038/384621a0
  • Wang L, Hu H. Size effects on effective Young’ s modulus. Int J Comput Methods. 2005;2:315–326. doi: 10.1142/S0219876205000508
  • Zhu Y, Qin Q, Xu F, et al. Size effects on elasticity, yielding, and fracture of silver nanowires: in situ experiments. Phys Rev B – Condens Matter Mater Phys. 2012;85:1–7.
  • Yu H, Sun C, Zhang WW, et al. Study on size-dependent Young’s modulus of a silicon nanobeam by molecular dynamics simulation. J Nanomater. 2013;2013:1–5.
  • Mashreghi A. Determining the volume thermal expansion coefficient of TiO2 nanoparticle by molecular dynamics simulation. Comput Mater Sci. [Internet]. 2012;62:60–64. DOI:10.1016/j.commatsci.2012.05.018
  • Diebold U. The surface science of titanium dioxide. Surf Sci Rep. [Internet]. 2003;48:53–229. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0167572902001000 doi: 10.1016/S0167-5729(02)00100-0
  • Zhang H, Banfield JF. Structural characteristics and mechanical and thermodynamic properties of nanocrystalline TiO2. Chem Rev. 2014;114:9613–9644. doi: 10.1021/cr500072j
  • Lu K, Jin ZH. Melting and superheating of low-dimensional materials. Curr Opin Solid State Mater. Sci. 2001;5:39–44. doi: 10.1016/S1359-0286(00)00027-9
  • Bhatt S, Kumar M. Effect of size and shape on melting and superheating of free standing and embedded nanoparticles. J Phys Chem Solids [Internet]. 2017;106:112–117. DOI:10.1016/j.jpcs.2017.03.010
  • Nanda KK, Sahu SN, Behera SN. Liquid-drop model for the size-dependent melting of low-dimensional systems. Phys Rev A – At Mol Opt Phys. 2002;66:132081–132088. doi: 10.1103/PhysRevA.66.013208
  • Qi WH, Wang MP. Size and shape dependent melting temperature of metallic nanoparticles. Mater Chem Phys. 2004;88:280–284. doi: 10.1016/j.matchemphys.2004.04.026
  • Davoodi J, Alizade H, Rafii-tabar H. Molecular dynamics simulation of carbon nanotubes melting transitions. J Comput Theor Nanosci. 2012;9:505–509. doi: 10.1166/jctn.2012.2052
  • Buesser B, Gr AJ, Pratsinis SE. Sintering rate and mechanism of TiO2 nanoparticles by molecular dynamics. J Phys Chem C. 2011;115:11030–11035. doi: 10.1021/jp2032302
  • Koparde VN, Cummings PT. Molecular dynamics simulation of titanium dioxide nanoparticle sintering. J Phys Chem B. 2005;109:24280–24287. doi: 10.1021/jp054667p
  • Koparde VN, Cummings PT. Sintering of titanium dioxide nanoparticles: A comparison between molecular dynamics and phenomenological modeling. J Nanoparticle Res. 2008;10:1169–1182. doi: 10.1007/s11051-007-9342-3
  • Kim DH, Kim HY, Ryu JH, et al. Phase diagram of Ag-Pd bimetallic nanoclusters by molecular dynamics simulations: solid-to-liquid transition and size-dependent behavior. Phys Chem Chem Phys. 2009;11:5079–5085. doi: 10.1039/b821227a
  • Pawlow P. Über die Abhängigkeit des Schmelzpunktes von der Oberflächenenergie eines festen Körpers. Zeitschrift für Phys Chemie. 1909;65:1–35. doi: 10.1515/zpch-1909-6502
  • Buffat P, Borel JP. Size effect on the melting temperature of gold particles. Phys Rev A. 1976;13:2287–2298. doi: 10.1103/PhysRevA.13.2287
  • Qi WH, Wang MP, Zhou M, et al. Modeling cohesive energy and melting temperature of nanocrystals. J Phys Chem Solids. 2006;67:851–855. doi: 10.1016/j.jpcs.2005.12.003
  • Qi W. Nanoscopic thermodynamics. Acc Chem Res. 2016;49:1587–1595. doi: 10.1021/acs.accounts.6b00205
  • Cheng YT, Shan TR, Liang T, et al. A charge optimized many-body (comb) potential for titanium and titania. J Phys Condens Matter. 2014;26:1–12.
  • Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117:1–19. doi: 10.1006/jcph.1995.1039
  • Nosé S. A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys. 1984;81:511–519. doi: 10.1063/1.447334
  • Nosé S. A molecular dynamics method for simulations in the canonical ensemble. Mol Phys. 1984;52:255–268. doi: 10.1080/00268978400101201
  • Hoover WG. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A. 1985;31:1695–1697. doi: 10.1103/PhysRevA.31.1695
  • Taylor P, Matsui M, Akaogi M. Molecular dynamics simulation of the structural and physical properties of the four polymorphs of TiO2. Mol Simul. 1991;6:239–244. doi: 10.1080/08927029108022432
  • Grant FA. Properties of rutile (titanium dioxide). Rev Mod Phys. 1959;31:646–674. doi: 10.1103/RevModPhys.31.646
  • Qi L, Zhang HF, Hu ZQ, et al. Molecular dynamic simulation studies of glass formation and atomic-level structures in Pd – Ni alloy. Phys Lett A. 2004;327:506–511. doi: 10.1016/j.physleta.2004.05.043
  • Essajai R, Hassanain N. Molecular dynamics study of melting proprieties of gold nanorods. J Mol Liq. [Internet]. 2018;261:402–410. doi: 10.1016/j.molliq.2018.04.051
  • Boerio-Goates J, Li G, Li L, et al. Surface water and the origin of the positive excess specific heat for 7 nm rutile and anatase nanoparticles. Nano Lett. 2006;6:750–754. doi: 10.1021/nl0600169
  • Schliesser JM, Smith SJ, Li G, et al. Heat capacity and thermodynamic functions of nano-TiO2rutile in relation to bulk-TiO2 rutile. J Chem Thermodyn. [Internet]. 2015;81:311–322. DOI:10.1016/j.jct.2014.08.002
  • Iyengar L, Rao KVK, Naidu SVN. Thermal expansion of rutile and anatase. J Am Ceram Soc. 1969;53:124.
  • Hummer DR, Heaney PJ, Post JE. Thermal expansion of anatase and rutile between 300 and 575 K using synchrotron powder X-ray diffraction. Powder Diffr. 2007;22:352–357. doi: 10.1154/1.2790965
  • Barnard AS, Zapol P. A model for the phase stability of arbitrary nanoparticles as a function of size and shape. J Chem Phys. 2004;121:4276–4283. doi: 10.1063/1.1775770
  • Zhu YF, Lian JS, Jiang Q. Modeling of the melting point, Debye temperature, thermal expansion coefficient, and the specific heat of nanostructured materials. J Phys Chem C [Internet]. 2009;113:16896–16900. DOI:10.1021/jp902097f
  • Avramov I, Michailov M. Specific heat of nanocrystals. J Phys Condens Matter [Internet]. 2008;20:295224, Available from: http://stacks.iop.org/0953-8984/20/i=29/a=295224?key=crossref.4a20c23cc656a142c2071ff10705d0e6 doi: 10.1088/0953-8984/20/29/295224
  • Attarian Shandiz M, Safaei A, Sanjabi S, et al. Modeling the cohesive energy and melting point of nanoparticles by their average coordination number. Solid State Commun. 2008;145:432–437. doi: 10.1016/j.ssc.2007.12.021
  • Ruffa AR. Temperature dependence of the elastic shear moduli of the cubic metals. Phys Rev B. 1977;16:2504–2514. doi: 10.1103/PhysRevB.16.2504
  • Jacob I, Moreh R, Shahal O, et al. Effective and Debye temperatures of Ti in TiC, TiO2, and TiH2. Phys Rev B. 1987;35:8–12. doi: 10.1103/PhysRevB.35.8
  • Yang CC, Xiao MX, Li W, et al. Size effects on Debye temperature, Einstein temperature, and volume thermal expansion coefficient of nanocrystals. Solid State Commun. 2006;139:148–152. doi: 10.1016/j.ssc.2006.05.035
  • Wu XM, Wang L, Tan ZC, et al. Preparation, characterization, and low-temperature heat capacities of nanocrystalline TiO2 ultrafine powder. J Solid State Chem. 2001;156:220–224. doi: 10.1006/jssc.2000.8991

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.