286
Views
3
CrossRef citations to date
0
Altmetric
Articles

Ionic mobilities of Na+ and Cl at 25°C as a function of Ewald sum parameter: a comparative molecular dynamics simulation study

Pages 262-270 | Received 11 Sep 2019, Accepted 17 Nov 2019, Published online: 26 Nov 2019

References

  • De Leeuw SW, Perram JW, Smith ER. Simulation of electrostatic systems in periodic boundary conditions. I. Lattice sums and dielectric constant. Proc R Soc Lond. 1980;373:27–56. doi: 10.1098/rspa.1980.0135
  • Heyes DM. Electrostatic potentials and fields in infinite point charge lattices. J Chem Phys. 1981;74:1924–1929. doi: 10.1063/1.441285
  • Barker JA, Watts RO. Monte Carlo studies of the dielectric properties of water-like models. Mol Phys. 1973;26:789–792. doi: 10.1080/00268977300102101
  • Friedman HL. Image approximation to the reaction field. Mol Phys. 1975;29:1533–1543. doi: 10.1080/00268977500101341
  • Barker JA. The problem of long-range forces in the computer simulation of condensed matter (ed. D. Ceperley). NRCC Workshop Proceedings. 1980;9:45–46.
  • Atkins W. Physical Chemistry. 4th ed. San Francisco: Freeman; 1990; p. 755–756 & 963.
  • Lee SH, Rasaiah JC. Molecular dynamics simulation of ionic mobility I. Alkali metal cations in water at 25°C. J Chem Phys. 1994;101:6964–6974. doi: 10.1063/1.468323
  • Jorgensen WL, Chandrasekhar J, Madura JD, et al. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79:926–935. doi: 10.1063/1.445869
  • (a) Chandrasekhar J, Spellmeyer D, Jorgensen WL. J Am Chem Soc. 1984;106:903–910. (b) Jorgensen WL. J Chem Phys. 1982;77:4156–4163. doi: 10.1021/ja00316a012
  • Gear WC. Numerical initial value problems in ordinary differential equations. New York: McGraw-Hill; 1965.
  • Steinhauser O. Reaction field simulation of water. Mol Phys. 1982;45:335–348. doi: 10.1080/00268978200100281
  • Lee SH, Rasaiah JC. Molecular dynamics simulation of ion mobility. 2. Alkali metal and halide ions using the SPC/E model for water at 25°C. J Phys Chem. 1996;100:1420–1425. doi: 10.1021/jp953050c
  • Berendsen HJC, Grigera JR, Straatsma TP. The missing term in effective pair potentials. J Phys Chem. 1987;91:6269–6271. doi: 10.1021/j100308a038
  • Koneshan S, Rasaiah JC, Lynden-Bell RM, et al. Solvent structure, dynamics, and ion mobility in aqueous solutions at 25°C. J Phys Chem. 1998;102:4193–4204. doi: 10.1021/jp980642x
  • Patra M, Karttunen M. Systematic comparison of force fields for microscopic simulations of NaCl in aqueous solutions: diffusion, free energy of hydration, and structural properties. J Comput Chem. 2004;25:678–689. doi: 10.1002/jcc.10417
  • Swope WC, Andersen HC, Berens PH, et al. A computer simulation method for the calculation of equilibrium constraints for the formation of physical clusters of molecules: application to small water clusters. J Chem Phys. 1982;76:637–649. doi: 10.1063/1.442716
  • Lee SH. Molecular dynamics simulation study for diffusion of Na+ ion in water-filled carbon nanotubes at 25°C. Mol Sim. 2014;40:335–340. doi: 10.1080/08927022.2013.814913
  • Dang LX. Mechanism and thermodynamics of Ion selectivity in aqueous solutions of 18-Crown-6 ether: a molecular dynamics study. J Am Chem Soc. 1995;117:6954–6960. doi: 10.1021/ja00131a018
  • Smith DE, Dang LX. Computer simulations of NaCl association in polarizable water. J Chem Phys. 1994;100:3757–3766. doi: 10.1063/1.466363
  • Hoover WG, Ladd AJC, Moran B. High-Strain-Rate Plastic Flow Studied via Nonequilibrium molecular dynamics. Phys Rev Lett. 1982;48:1818–1820. doi: 10.1103/PhysRevLett.48.1818
  • Evans DJ. Computer “experiment” for nonlinear thermodynamics of Couette flow. J Chem Phys. 1983;78:3297–3302. doi: 10.1063/1.445195
  • (a) Evans DJ. On the representation of orientation space. Mol Phys. 1977;34:317–325. (b) Evans DJ, Murad S. Singularity-free algorithm for molecular dynamics simulation of rigid polyatomics. Mol Phys. 1977;34:327–331. doi: 10.1080/00268977700101751
  • Postma JPM. [Ph.D. thesis]. University of Groningen; 1985.
  • Impey RW, Madden PA, McDonald IR. Hydration and mobility of ions in solution. J Phys Chem. 1983;87:5071–5083. doi: 10.1021/j150643a008
  • Lee SH. Molecular dynamics simulation for ion mobility of alkali earth cations in water at 25°C. Mol Sim. 2013;39:895–901. doi: 10.1080/08927022.2013.775440
  • Lee SH, Kim J. Transport properties of bulk water at 243-550 K: a comparative molecular dynamics simulation study using SPC/E, TIP4P, and TIP4P/2005 water models. Mol Phys. 2019;117:1926–1933. doi: 10.1080/00268976.2018.1562123
  • Erratum: κ = 2.0 Å−1 should read κ = 2.0 nm−1 = 0.2 Å−1 in Ref.63 of the current Ref.26 and therein.
  • Neria E, Fischer S, Karplus M. Simulation of activation free energies in molecular systems. J Chem Phys. 1996;105:1902–1921. doi: 10.1063/1.472061
  • Easteal AJ, Price WE, Woolf LA. Diaphragm cell for high-temperature diffusion measurements. Tracer diffusion coefficients for water to 363 K. J Chem Soc, Faraday Tans 1. 1989;85:1091–1097. doi: 10.1039/f19898501091
  • Kell GS. Effects of isotopic composition, temperature, pressure, and dissolved gases on the density of liquid water. J Phys Chem Ref Data. 1977;6:1109–1131. doi: 10.1063/1.555561
  • Abascal JLF, Vega C. A general purpose model of the condensed phases of water: TIP4P/2005. J Chem Phys. 2005;123:234505(12). doi: 10.1063/1.2121687

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.