296
Views
9
CrossRef citations to date
0
Altmetric
Articles

Buckling analysis of boron nitride nanotube with and without defect using molecular dynamic simulation

& ORCID Icon
Pages 279-288 | Received 25 Jul 2019, Accepted 12 Nov 2019, Published online: 05 Dec 2019

References

  • Rubio A, Corkill JL, Cohen ML. Theory of graphitic boron nitride nanotubes. Physical Review B. 1994;49:5081. doi: 10.1103/PhysRevB.49.5081
  • Blase X, Rubio A, Louie S, et al. Stability and band gap constancy of boron nitride nanotubes. EPL (Europhy Lett). 1994;28:335. doi: 10.1209/0295-5075/28/5/007
  • Chopra NG, Luyken R, Cherrey K, et al. Boron nitride nanotubes. Science. 1995;269:966–967. doi: 10.1126/science.269.5226.966
  • Suryavanshi AP, Yu M-F, Wen J, et al. Elastic modulus and resonance behavior of boron nitride nanotubes. Appl Phys Lett. 2004;84:2527–2529. doi: 10.1063/1.1691189
  • Golberg D, Bando Y, Kurashima K, et al. Synthesis and characterization of ropes made of BN multiwalled nanotubes. Scr Mater. 2001;44:1561–1565. doi: 10.1016/S1359-6462(01)00724-2
  • Mele E, Král P. Electric polarization of heteropolar nanotubes as a geometric phase. Phys. Rev. Lett. 2002;88:056803. doi: 10.1103/PhysRevLett.88.056803
  • Jhi S-H, Kwon Y-K. Hydrogen adsorption on boron nitride nanotubes: a path to room-temperature hydrogen storage. Physical Review B. 2004;69:245407. doi: 10.1103/PhysRevB.69.245407
  • Chopra NG, Zettl A. Measurement of the elastic modulus of a multi-wall boron nitride nanotube. Solid State Commun. 1998;105:297–300. doi: 10.1016/S0038-1098(97)10125-9
  • Kim P, Shi L, Majumdar A, et al. Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 2001;87:215502. doi: 10.1103/PhysRevLett.87.215502
  • Li LH, Chen Y. Superhydrophobic properties of nonaligned boron nitride nanotube films. Langmuir. 2009;26:5135–5140. doi: 10.1021/la903604w
  • Li L, Li LH, Chen Y, et al. High-quality boron nitride nanoribbons: unzipping during nanotube synthesis. Angewandte Chemie International Edition. 2013;52:4212–4216. doi: 10.1002/anie.201209597
  • Li LH, Chen Y, Lin M-Y, et al. Single deep ultraviolet light emission from boron nitride nanotube film. Appl Phys Lett. 2010;97:141104. doi: 10.1063/1.3497261
  • Wang R, Wang S, Wu X, et al. First-principles calculations on third-order elastic constants and internal relaxation for monolayer graphene. Physica B: Condensed Matter. 2010;405:3501–3506. doi: 10.1016/j.physb.2010.05.032
  • Yu J, Chen Y, Elliman RG, et al. Isotopically enriched 10BN nanotubes. Adv Mat. 2006;18:2157–2160. doi: 10.1002/adma.200600231
  • Tadi Beni Y. Size-dependent analysis of piezoelectric nanobeams including electro-mechanical coupling. Mech Res Commun. 2016;75:67–80. doi: 10.1016/j.mechrescom.2016.05.011
  • Tadi Beni Y. Size-dependent electromechanical bending, buckling, and free vibration analysis of functionally graded piezoelectric nanobeams. J Intell Mater Syst Struct. 2016;27:2199–2215. doi: 10.1177/1045389X15624798
  • Hummer G, Rasaiah JC, Noworyta JP. Water conduction through the hydrophobic channel of a carbon nanotube. Nature. 2001;414:188–190. doi: 10.1038/35102535
  • Das SL, Mandal T, Gupta SS. Inextensional vibration of zig-zag single-walled carbon nanotubes using nonlocal elasticity theories. Int. J. Solids Struct. 2013;50:2792–2797. doi: 10.1016/j.ijsolstr.2013.04.019
  • Mehralian F, Beni YT, Karimi Zeverdejani M. Calibration of nonlocal strain gradient shell model for buckling analysis of nanotubes using molecular dynamics simulations. Physica B: Condensed Matter. 2017;521:102–111. doi: 10.1016/j.physb.2017.06.058
  • Aydogdu M. Axial vibration analysis of nanorods (carbon nanotubes) embedded in an elastic medium using nonlocal elasticity. Mech Res Commun. 2012;43:34–40. doi: 10.1016/j.mechrescom.2012.02.001
  • Mehralian F, Beni YT, Karimi Zeverdejani M. Nonlocal strain gradient theory calibration using molecular dynamics simulation based on small scale vibration of nanotubes. Physica B: Condensed Matter. 2017;514:61–69. doi: 10.1016/j.physb.2017.03.030
  • Huang Y, Luo QZ, Li XF. Transverse waves propagating in carbon nanotubes via a higher-order nonlocal beam model. Compos. Struct. 2013;95:328–336. doi: 10.1016/j.compstruct.2012.07.038
  • Zeighampour H, Beni YT, Karimipour I. Wave propagation in double-walled carbon nanotube conveying fluid considering slip boundary condition and shell model based on nonlocal strain gradient theory. Microfluid Nanofluidics. 2017;21:85. doi: 10.1007/s10404-017-1918-3
  • Wang L, Xu YY, Ni Q. Size-dependent vibration analysis of three-dimensional cylindrical microbeams based on modified couple stress theory: a unified treatment. Int. J. Eng. Sci. 2013;68:1–10. doi: 10.1016/j.ijengsci.2013.03.004
  • Akgöz B, Civalek Ö. Free vibration analysis of axially functionally graded tapered Bernoulli–Euler microbeams based on the modified couple stress theory. Compos. Struct. 2013;98:314–322. doi: 10.1016/j.compstruct.2012.11.020
  • Şimşek M, Reddy JN. Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory. Int. J. Eng. Sci. 2013;64:37–53. doi: 10.1016/j.ijengsci.2012.12.002
  • Zeighampour H, Tadi Beni Y. Size-dependent vibration of fluid-conveying double-walled carbon nanotubes using couple stress shell theory. Physica E. 2014;61:28–39. doi: 10.1016/j.physe.2014.03.011
  • Zeighampour H, Tadi Beni Y. Analysis of conical shells in the framework of coupled stresses theory. Int. J. Eng. Sci. 2014;81:107–122. doi: 10.1016/j.ijengsci.2014.04.008
  • Zeighampour H, Beni YT. A shear deformable cylindrical shell model based on couple stress theory. Arch. Appl. Mech. 2014: 1–15.
  • Shojaeian M, Zeighampour H. Size dependent pull-in behavior of functionally graded sandwich nanobridges using higher order shear deformation theory. Compos Struct. 2016;143:117–129. doi: 10.1016/j.compstruct.2016.02.008
  • Ansari R, Gholami R, Faghih Shojaei M, et al. Size-dependent bending, buckling and free vibration of functionally graded Timoshenko microbeams based on the most general strain gradient theory. Compos. Struct. 2013;100:385–397. doi: 10.1016/j.compstruct.2012.12.048
  • Akgöz B, Civalek Ö. Longitudinal vibration analysis of strain gradient bars made of functionally graded materials (FGM). Compos. Part B: Eng. 2013;55:263–268. doi: 10.1016/j.compositesb.2013.06.035
  • Tadi Beni Y, Mehralian F, Zeighampour H. The modified couple stress functionally graded cylindrical thin shell formulation. Mech. Adv. Mater. Struct. 2015: 00–00.
  • Zeighampour H, Beni YT. Free vibration analysis of axially functionally graded nanobeam with radius varies along the length based on strain gradient theory. Appl. Math. Modell. 2015;39(18):5354–5369. doi: 10.1016/j.apm.2015.01.015
  • Zeighampour H, Beni YT, Karimipour I. Torsional vibration and static analysis of the cylindrical shell based on strain gradient theory. Arab J Sci Eng. 2016;41:1713–1722. doi: 10.1007/s13369-015-1940-2
  • Gurtin ME, Weissmüller J, Larché F. A general theory of curved deformable interfaces in solids at equilibrium. Philos. Mag. A. 1998/11/01;78:1093–1109. doi: 10.1080/01418619808239977
  • Wong EW, Sheehan PE, Lieber CM. Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science. 1997;277:1971–1975. doi: 10.1126/science.277.5334.1971
  • Falvo MR, Clary G, Taylor Ii R, et al. Bending and buckling of carbon nanotubes under large strain. Nature. 1997;389:582. doi: 10.1038/39282
  • Hou S, Shen Z, Zhang J, et al. Ab initio calculations on the open end of single-walled BN nanotubes. Chem Phys Lett. 2004;393:179–183. doi: 10.1016/j.cplett.2004.06.014
  • Zhang Z, Guo W, Dai Y. Stability and electronic properties of small boron nitride nanotubes. J Appl Phys. 2009;105:084312. doi: 10.1063/1.3115446
  • Roy Chowdhury A, Wang C, Koh S. Continuum shell model for buckling of armchair carbon nanotubes under compression or torsion. Int J Appl Mech. 2014;6:1450006. doi: 10.1142/S1758825114500069
  • Mehralian F, Beni YT, Kiani Y. Molecular dynamics study on the thermal buckling of carbon nanotubes in the presence of pre-load. Materials Research Express. 2017;4:015011. doi: 10.1088/2053-1591/aa576a
  • Chandra A, Patra PK, Bhattacharya B. Thermomechanical buckling of boron nitride nanotubes using molecular dynamics. Materials Research Express. 2016;3:025005. doi: 10.1088/2053-1591/3/2/025005
  • Ajori S, Ansari R. Torsional buckling behavior of boron-nitride nanotubes using molecular dynamics simulations. Current Applied Physics. 2014;14:1072–1077. doi: 10.1016/j.cap.2014.06.001
  • Rahmandoust M, Öchsner A. Buckling behaviour and natural frequency of zigzag and armchair single-walled carbon nanotubes. J Nano Res. 2011;16:153–160. doi: 10.4028/www.scientific.net/JNanoR.16.153
  • Ebrahimi-Nejad S, Shokuhfar A, Zare-Shahabadi A. Molecular dynamics simulation of the buckling behavior of boron nitride nanotubes under uniaxial compressive loading. In Defect and Diffusion Forum. 2010: 984–989.
  • Yengejeh SI, Kazemi SA, Oechsner A. Advances in mechanical analysis of structurally and atomically modified carbon nanotubes and degenerated nanostructures: A review. Comp Part B: Eng. 2016;86:95–107. doi: 10.1016/j.compositesb.2015.10.006
  • Ghavamian A, Öchsner A. Numerical investigation on the influence of defects on the buckling behavior of single-and multi-walled carbon nanotubes. Phy E: Low-Dimensional Sys and Nanostruct. 2012;46:241–249. doi: 10.1016/j.physe.2012.08.002
  • Ou X, Han Q, Wang C. Molecular dynamics analysis on tensile properties of carbon nanotubes with different cracks. Mol Simul. 2016;42:764–770. doi: 10.1080/08927022.2015.1089993
  • Nguyen V-T, Nguyen D-T, Le M-Q. Bending of boron nitride nanotubes: an atomistic study. Mech Adv Mater Struc. 2019;26(16):1357–1364. doi: 10.1080/15376494.2018.1432801
  • Talukdar K, Mitra A. Influence of odd and even number of Stone–Wales defects on the fracture behaviour of an armchair single-walled carbon nanotube under axial and torsional strain. Mol Simul. 2010;36:409–417. doi: 10.1080/08927020903530971
  • Parvaneh V, Shariati M, Torabi H, et al. Torsional buckling behavior of SWCNTs using a molecular structural mechanics approach considering vacancy defects. Fullerene Nanotube Carbon Nanostruct. 2012;20:709–720. doi: 10.1080/1536383X.2011.572311
  • Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117:1–19. doi: 10.1006/jcph.1995.1039
  • Sevik C, Kinaci A, Haskins JB, et al. Characterization of thermal transport in low-dimensional boron nitride nanostructures. Physical Review B. 2011;84:085409. doi: 10.1103/PhysRevB.84.085409

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.