487
Views
7
CrossRef citations to date
0
Altmetric
Articles

Transferability of interatomic potentials with insights into the structure–property relationship of SiO2–CaO–MgO–Al2O3 melts

, , , , &
Pages 289-299 | Received 04 Jul 2019, Accepted 21 Nov 2019, Published online: 05 Dec 2019

References

  • Grossman L, Fedkin AV. CaO-MgO-Al2O3-SiO2 liquids: chemical and isotopic effects of Mg and Si evaporation in a closed system of solar composition. Geochim Cosmochim Acta. 2003;67:4205–4221. doi: 10.1016/S0016-7037(03)00277-1
  • Khater GA. Crystallizing phases from multi-component silicate glasses in the system K2O-CaO-MgO-Al2O3-SiO2. Ceram Int. 2001;27:661–668. doi: 10.1016/S0272-8842(01)00015-3
  • Litasov K, Ohtani E, Taniguchi H. Melting relations of hydrous pyrolite in CaO-MgO-Al2O3-SiO2-H2O system at the transition zone pressures. Geophys Res Lett. 2001;28:1303–1306. doi: 10.1029/2000GL012291
  • Litasov KD, Ohtani E, Taniguchi H. Phase diagram of pyrolite in the system CaO-MgO-Al2O3-SiO2-H2O at a pressure up to 25 GPa. Dokl Earth Sci. 2001;379:543–545.
  • Gasparik T. An internally consistent thermodynamic model for the system CaO-MgO-Al2O3-SiO2 derived primarily from phase equilibrium data. J Geol. 2000;108:103–119. doi: 10.1086/314389
  • Sun Y, Wang H, Zhang Z. Understanding the relationship between structure and thermophysical properties of CaO-SiO2-MgO-Al2O3 molten slags. Metall Mater Trans B – Process Metall Mater Process Sci. 2018;49:677–687. doi: 10.1007/s11663-018-1178-y
  • Massobrio C, Du J, Bernasconi M, et al. Molecular dynamics simulations of disordered materials. New York, USA: Springer; 2015.
  • Matsui M. Molecular dynamics study of the structures and bulk moduli of crystals in the system CaO-MgO-Al2O3-SiO2. Phys Chem Miner. 1996;23:345–353. doi: 10.1007/BF00199500
  • Matsui M. Molecular dynamics simulation of structures, bulk moduli, and volume thermal expansivities of silicate liquids in the system CaO-MgO-Al2O3-SiO2. Geophys Res Lett. 1996;23:395–398. doi: 10.1029/96GL00260
  • Mongalo L, Lopis AS, Venter GA. Molecular dynamics simulations of the structural properties and electrical conductivities of CaO-MgO-Al2O3-SiO2 melts. J Non Cryst Solids. 2016;452:194–202. doi: 10.1016/j.jnoncrysol.2016.08.042
  • Haile J. Molecular dynamics simulation. New York (NY): Wiley; 1992.
  • Tosi M, Fumi F. Ionic sizes and born repulsive parameters in the NaCl-type alkali halides – II: the generalized Huggins-Mayer form. J Phys Chem Solids. 1964;25:45–52. doi: 10.1016/0022-3697(64)90160-X
  • Fumi FG, Tosi M. Ionic sizes and born repulsive parameters in the NaCl-type alkali halides – I: the Huggins-Mayer and Pauling forms. J Phys Chem Solids. 1964;25:31–43. doi: 10.1016/0022-3697(64)90159-3
  • Bouhadja M, Jakse N, Pasturel A. Stokes–Einstein violation and fragility in calcium aluminosilicate glass formers: a molecular dynamics study. Mol Simul. 2014;40:251–259. doi: 10.1080/08927022.2013.840893
  • Bouhadja M, Jakse N, Pasturel A. Striking role of non-bridging oxygen on glass transition temperature of calcium aluminosilicate glass-formers. J Chem Phys. 2014;140:234507. doi: 10.1063/1.4882283
  • Bouhadja M, Jakse N, Pasturel A. Structural and dynamic properties of calcium aluminosilicate melts: a molecular dynamics study. J Chem Phys. 2013;138:224510. doi: 10.1063/1.4809523
  • Belashchenko D, Ostrovski O. Computer simulation of noncrystalline ionic–covalent oxides in the SiO2–CaO–FeO system. Inorg Mater. 2002;38:799–804. doi: 10.1023/A:1019726827460
  • Belashchenko D, Skvortsov L. Molecular dynamics study of CaO–Al2O3 melts. Inorg Mater. 2001;37:476–481. doi: 10.1023/A:1017576717112
  • Bauchy M. Structural, vibrational, and elastic properties of a calcium aluminosilicate glass from molecular dynamics simulations: the role of the potential. J Chem Phys. 2014;141:024507. doi: 10.1063/1.4886421
  • Matsui M. A transferable interatomic potential model for crystals and melts in the system Cao-MgO-Al2O3-SiO2. Mineral Mag. 1994;58:571–572. doi: 10.1180/minmag.1994.58A.2.34
  • Hirao K, Kawamura K. Material design using personal computer. Tokyo: Shokabo; 1994. p. 52.
  • Miyake A. Interatomic potential parameters for molecular dynamics simulation of crystals in the system K2O-Na2O-CaO-MgO-Al2O3-SiO2. Miner J. 1998;20:189–194. doi: 10.2465/minerj.20.189
  • Guillot B, Sator N. A computer simulation study of natural silicate melts. Part I: low pressure properties. Geochim Cosmochim Acta. 2007;71:1249–1265. doi: 10.1016/j.gca.2006.11.015
  • Li K, Khanna R, Bouhadja M, et al. A molecular dynamic simulation on the factors influencing the fluidity of molten coke ash during alkalization with K2O and Na2O. Chem Eng J. 2017;313:1184–1193. doi: 10.1016/j.cej.2016.11.011
  • Li K, Bouhadja M, Khanna R, et al. Influence of SiO2 reduction on the local structural order and fluidity of molten coke ash in the high temperature zone of a blast furnace: a molecular dynamics simulation investigation. Fuel. 2016;186:561–570. Epub 570. doi: 10.1016/j.fuel.2016.08.107
  • Li K, Khanna R, Zhang J, et al. Molecular dynamics investigation on coke ash behavior in the high-temperature zones of a blast furnace: influence of alkalis. Energy Fuels. 2017;31:13466–13474. doi: 10.1021/acs.energyfuels.7b02795
  • Jiang C, Li K, Zhang J, et al. The effect of CaO (MgO) on the structure and properties of aluminosilicate system by molecular dynamics simulation. J Mol Liq. 2018;268:762–769. doi: 10.1016/j.molliq.2018.07.123
  • Jiang C, Li K, Zhang J, et al. Molecular dynamics simulation on the effect of MgO/Al2O3 ratio on structure and properties of blast furnace slag under different basicity conditions. Metall Mater Trans B. 2019;50:367–375. doi: 10.1007/s11663-018-1450-1
  • Jiang C, Li K, Zhang J, et al. Effect of MgO/Al2O3 ratio on the structure and properties of blast furnace slags: a molecular dynamics simulation. J Non Cryst Solids. 2018;502:76–82. doi: 10.1016/j.jnoncrysol.2018.06.043
  • Miyake A. Interatomic potential parameters for molecular dynamics simulation of crystals in the system K2O–Na2O–CaO–MgO–Al2O3–SiO2. Mineral J. 1998;20:189–194. doi: 10.2465/minerj.20.189
  • Machin JS, Hanna DL. Viscosity studies of system CaO–MgO–Al2O3–SiO2: I, 40% SiO2. J Am Ceram Soc. 1945;28:310–316. doi: 10.1111/j.1151-2916.1945.tb14500.x
  • Machin JS, Yee TB. Viscosity studies of system CaO-MgO-Al2O3-SiO2: II, CaO-Al2O3-SiO2. J Am Ceram Soc. 1948;31:200–204. doi: 10.1111/j.1151-2916.1948.tb14290.x
  • Machin JS, Yee TB, Hanna D. Viscosity studies of system CaO–MgO–Al2O3–SiO2: III, 35, 45, and 50% SiO2. J Am Ceram Soc. 1952;35:322–325. doi: 10.1111/j.1151-2916.1952.tb13057.x
  • Machin JS, Yee TB. Viscosity studies of system CaO–MgO–Al2O3–SiO3: IV, 60 and 65% SiO2. J Am Ceram Soc. 1954;37:177–186. doi: 10.1111/j.1151-2916.1954.tb14019.x
  • Bale C, Chartrand P, Degterov S, et al. FactSage thermochemical software and databases. CALPHAD. 2002;26:189–228. doi: 10.1016/S0364-5916(02)00035-4
  • Spera FJ. Encyclopedia of Volcanoes. 1st. Amsterdam, Netherlands: Elsevier Inc.; 2000.
  • Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117:1–19. doi: 10.1006/jcph.1995.1039
  • Rapaport DC. The art of molecular dynamics simulation. New York, USA: Cambridge University Press; 2004.
  • Le Roux S, Petkov V. ISAACS-interactive structure analysis of amorphous and crystalline systems. J Appl Crystallogr. 2010;43:181–185. doi: 10.1107/S0021889809051929
  • Bordat P, Müller-Plathe F. The shear viscosity of molecular fluids: A calculation by reverse nonequilibrium molecular dynamics. J Chem Phys. 2002;116:3362–3369. doi: 10.1063/1.1436124
  • Müller-Plathe F. Reversing the perturbation in nonequilibrium molecular dynamics: an easy way to calculate the shear viscosity of fluids. Phys Rev E. 1999;59:4894. doi: 10.1103/PhysRevE.59.4894
  • Zwanzig R. On the relation between self-diffusion and viscosity of liquids. J Chem Phys. 1983;79:4507–4508. doi: 10.1063/1.446338
  • Greaves G, Fontaine A, Lagarde P, et al. Local structure of silicate glasses. Nature. 1981;293:611–616. doi: 10.1038/293611a0
  • Greaves G. EXAFS and the structure of glass. J Non Cryst Solids. 1985;71:203–217. doi: 10.1016/0022-3093(85)90289-3
  • Hennet L, Drewitt JW, Neuville DR, et al. Neutron diffraction of calcium aluminosilicate glasses and melts. J Non Cryst Solids. 2016;451:89–93. doi: 10.1016/j.jnoncrysol.2016.05.018
  • Guignard M, Cormier L. Environments of Mg and Al in MgO–Al2O3–SiO2 glasses: a study coupling neutron and X-ray diffraction and reverse Monte Carlo modeling. Chem Geol. 2008;256:111–118. doi: 10.1016/j.chemgeo.2008.06.008
  • Jakse N, Bouhadja M, Kozaily J, et al. Interplay between non-bridging oxygen, triclusters, and fivefold Al coordination in low silica content calcium aluminosilicate melts. Appl Phys Lett. 2012;101:201903. doi: 10.1063/1.4766920
  • Tandia A, Timofeev NT, Mauro JC, et al. Defect-mediated self-diffusion in calcium aluminosilicate glasses: a molecular modeling study. J Non Cryst Solids. 2011;357:1780–1786. doi: 10.1016/j.jnoncrysol.2010.12.078
  • Blissett R, Rowson N. A review of the multi-component utilisation of coal fly ash. Fuel. 2012;97:1–23. doi: 10.1016/j.fuel.2012.03.024
  • Toya T, Tamura Y, Kameshima Y, et al. Preparation and properties of CaO–MgO–Al2O3–SiO2 glass-ceramics from kaolin clay refining waste (Kira) and dolomite. Ceram Int. 2004;30:983–989. doi: 10.1016/j.ceramint.2003.11.005
  • Guo X, Cai X, Song J, et al. Crystallization and microstructure of CaO–MgO–Al2O3–SiO2 glass–ceramics containing complex nucleation agents. J Non Cryst Solids. 2014;405:63–67. doi: 10.1016/j.jnoncrysol.2014.08.048
  • Kojitani H, Akaogi M. Melting enthalpies of mantle peridotite: calorimetric determinations in the system CaO-MgO-Al2O3-SiO2 and application to magma generation. Earth Planet. Sci. Lett. 1997;153:209–222. doi: 10.1016/S0012-821X(97)00186-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.