121
Views
5
CrossRef citations to date
0
Altmetric
Articles

Adsorption analysis and mechanical characteristics of carbon nanotubes under physisorption of biological molecules in an aqueous environment using molecular dynamics simulations

ORCID Icon, &
Pages 388-397 | Received 22 Sep 2019, Accepted 30 Dec 2019, Published online: 14 Jan 2020

References

  • Bachtold A, Hadley P, Nakanishi T, et al. Logic circuits with carbon nanotube transistors. Science. 2001;294:1317. doi: 10.1126/science.1065824
  • Aloui W, Ltaief A, Bouazizi A. Transparent and conductive multiwalled carbon nanotubes flexible electrodes for optoelectronic applications. Superlattices Microstruct. 2013;64:581. doi: 10.1016/j.spmi.2013.10.027
  • Ajori S, Parsapour H, Ansari R, et al. Buckling behavior of various metallic glass nanocomposites reinforced by carbon nanotube and Cu nanowire: a molecular dynamics simulation study. Mater Res Exp. 2019;6:1–11. 095070.
  • Xie XL, Mai YW, Ping X. Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater Sci Eng Rep. 2005;49:89. doi: 10.1016/j.mser.2005.04.002
  • Ajori S, Ansari R, Sadeghi F. Molecular dynamics study of gigahertz nanomechanical oscillators based on an ion inside a series of electrically charged carbon nanotubes. Eur J Mech A. Solids. 2018;69:45–54. doi: 10.1016/j.euromechsol.2017.12.001
  • Ajori S, Ansari R, Haghighi S. Small strain effect on the mechanical vibration behavior of cross-linked functionalized carbon nanotubes with polyethylene: a molecular-dynamics study. EPL (Europhys Lett). 2019;125(4):1–4. 43001. doi: 10.1209/0295-5075/125/43001
  • Dyke CA, Tour JM. Overcoming the insolubility of carbon nanotubes through high degrees of sidewall functionalization. Chem Eur J 2004;10:813. doi: 10.1002/chem.200305534
  • Ajori S, Ansari R, Haghighi S. A molecular dynamics study on the buckling behavior of cross-linked functionalized carbon nanotubes under physical adsorption of polymer chains. Appl Surf Sci. 2018;427:704–714. doi: 10.1016/j.apsusc.2017.08.049
  • Ajori S, Ameri A, Ansari R. On the mechanical stability and buckling analysis of carbon nanotubes filled with ice nanotubes in the aqueous environment: a molecular dynamics simulation approach. J Mol Graphics Modell. 2019;89:74–81. doi: 10.1016/j.jmgm.2019.03.002
  • Bahr JL, Mickelson ET, Bronikowski MJ, et al. Dissolution of small diameter single-wall carbon nanotubes in organic solvents? Chem Commun. 2001;2:193. doi: 10.1039/b008042j
  • Ajori S, Ansari R, Darvizeh M. Vibration characteristics of single-and double-walled carbon nanotubes functionalized with amide and amine groups. Physica B. 2015;462:8. doi: 10.1016/j.physb.2015.01.003
  • Ajori S, Ansari R. Vibrational characteristics of diethyltoluenediamines (DETDA) functionalized carbon nanotubes using molecular dynamics simulations. Physica B. 2015;459:58. doi: 10.1016/j.physb.2014.11.101
  • Li T, Li J, Wang L, et al. Coalescence of immiscible liquid metal drop on graphene. Sci Rep. 2016;6:1–9. 34074. doi: 10.1038/s41598-016-0001-8
  • Li T, Duan Y, Wang J, et al. Distinct impact behaviors of liquid metals featured by diffusion and microstructure on different substrates: Insights from molecular dynamics simulation. Comput Mater Sci. 2018;145:174–183. doi: 10.1016/j.commatsci.2018.01.010
  • Striolo A, Chialvo AA, Gubbins KE, et al. Water in carbon nanotubes: adsorption isotherms and thermodynamic properties from molecular simulation. J Chem Phys. 2005;122:1–14. 234712. doi: 10.1063/1.1924697
  • Ansari R, Ajori S, Ameri A. On the vibrational characteristics of single-and double-walled carbon nanotubes containing ice nanotube in aqueous environment. Appl Phys A. 2015;121(1):223–232. doi: 10.1007/s00339-015-9413-8
  • Kong J, Franklin NR, Zhou C, et al. Nanotube molecular wires as chemical sensors. Science. 2000;287:622. doi: 10.1126/science.287.5453.622
  • Erlanger BF, Chen B-X, Zhu M, et al. Binding of an anti-Fullerene IgG monoclonal antibody to single wall carbon nanotubes. Nano Lett. 2001;1:465. doi: 10.1021/nl015570r
  • Huang W, Taylor S, Fu K, et al. Attaching proteins to carbon nanotubes via diimide-activated amidation. Nano Lett. 2002;2:311–314. doi: 10.1021/nl010095i
  • Ansari R, Ajori S, Ameri A. Stability characteristics and structural properties of single-and double-walled boron-nitride nanotubes under physical adsorption of flavin mononucleotide (FMN) in aqueous environment using molecular dynamics simulations. Appl. Surf. Sci. 2016;366:233–244. doi: 10.1016/j.apsusc.2016.01.098
  • Lu G, Maragakis P, Kaxiras E. Carbon nanotube interaction with DNA. Nano Lett. 2005;5:897. doi: 10.1021/nl050354u
  • Liang Z, Lao R, Wang J, et al. Solubilization of single-walled carbon nanotubes with single- stranded DNA generated from asymmetric PCR. Int J Mol Sci. 2007;8:705. doi: 10.3390/i8070705
  • Johnson RR, Charlie Johnson AT, Klein ML. Probing the structure of DNA-carbon nanotube hybrids with molecular dynamics. Nano Lett. 2008;8:69. doi: 10.1021/nl071909j
  • Song C, Xia Y, Zhao M, et al. Self-assembly of base-functionalized carbon nanotubes. Phys. Rev. B. 2005;72:1–6. 165430.
  • Das A, Sood AK, Maiti PK, et al. Binding of nucleobases with single-walled carbon nanotubes: theory and experiment. Chem. Phys. Lett. 2008;453:266. doi: 10.1016/j.cplett.2008.01.057
  • Albertorio F, Hughes ME, Golovchenko JA, et al. Base dependent DNA-carbon nanotube interactions: activation enthalpies and assembly-disassembly control. Nanotechnol. 2009;20:1–9. 395101. doi: 10.1088/0957-4484/20/39/395101
  • Singh P, Toma FM, Kumar J, et al. Carbon nanotube–nucleobase hybrids: nanorings from uracil-modified single-walled carbon nanotubes. Chem Eur J. 2011;17:6772. doi: 10.1002/chem.201100312
  • Zorbas V, Smith AL, Xie H, et al. Importance of aromatic content for peptide/single-walled carbon nanotube interactions. J Am Chem Soc. 2005;127:12323–12328. doi: 10.1021/ja050747v
  • Fan W, Zeng J, Zhang R. Quantum mechanical quantification of weakly interacting complexes of peptides with single-walled carbon nanotubes. J Chem Theor Comput. 2009;5:2879. doi: 10.1021/ct9002493
  • Wang Y, Ai H. Theoretical insights into the interaction mechanism between proteins and SWCNTs: adsorptions of tripeptides GXG on SWCNTs. J Phys Chem B. 2009;113:9620. doi: 10.1021/jp903315n
  • Roman T, Dino WA, Nakanishi H, et al. Amino acid. adsorption on single-walled carbon nanotubes. Eur Phys J D. 2006;38:117. doi: 10.1140/epjd/e2006-00043-1
  • Zhang Y, Li J, Shen Y, et al. Poly-L-lysine functionalization of single-walled carbon nanotube. J Phys Chem B. 2004;108:15343. doi: 10.1021/jp0471094
  • Piao L, Liu Q, Li Y. Interaction of amino acids and single-wall carbon nanotubes. J Phys Chem C. 2012;116:1724. doi: 10.1021/jp2085318
  • Rajarajeswari M, Iyakutti K, Kawazoe Y. Effect of chirality and curvature of single-walled carbon nanotubes on the adsorption of uracil. Phys Status Solidi B. 2011;248:1431. doi: 10.1002/pssb.201046558
  • Rajarajeswari M, Iyakutti K, Kawazoe Y. Adsorption mechanism of single guanine and thymine on single-walled carbon nanotubes. J Mol Model. 2011;17:2773. doi: 10.1007/s00894-010-0946-7
  • Ansari R, Ajori S, Ameri A. Elastic and structural properties and buckling behavior of single-walled carbon nanotubes under chemical adsorption of atomic oxygen and hydroxyl. Chem Phys Lett. 2014; 616–617: 120–125. doi: 10.1016/j.cplett.2014.10.036
  • Ansari R, Ajori S, Rouhi S. Elastic properties and buckling behavior of single-walled carbon nanotubes functionalized with diethyltoluenediamines using molecular dynamics simulations. Superlattice Miscrostruct. 2015;77:54. doi: 10.1016/j.spmi.2014.11.002
  • Ansari R, Ajori S, Rouhi S. Structural and elastic properties and stability characteristics of oxygenated carbon nanotubes under physical adsorption of polymers. Appl Surf Sci. 2015;332:640. doi: 10.1016/j.apsusc.2015.01.190
  • Plimpton SJ. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117:1. doi: 10.1006/jcph.1995.1039
  • Grindon C, Harris S, Evans T, et al. Large-scale molecular dynamics simulation of DNA: implementation and validation of the AMBER98 force field in LAMMPS. Phil Trans R Soc Lond A. 2004;362:1373. doi: 10.1098/rsta.2004.1381
  • Cornell WD, Cieplak P, Bayly CI, et al. A second generation force field for the simulation of proteins and nucleic acids. J Am Chem Soc. 1995;117:5179. doi: 10.1021/ja00124a002
  • Thompson MA. (2004). Molecular docking using ArgusLab, an efficient shape-based search algorithm and the AScore scoring function. ACS meeting, Philadelphia, 172, CINF 42, PA.
  • Zhang CL, Shen HS. Predicting the elastic properties of double-walled carbon nanotubes by molecular dynamics simulation. J Phys D Appl Phys. 2008;41:1–6. 055404. doi: 10.1051/epjap:2007176
  • Allen MP, Tildesley DJ. Computer simulation of liquids. 1986, New York.
  • Hoover WG. Canonical dynamics: equilibrium phase-space distributions. Phys Rev A. 1985;31:1695. doi: 10.1103/PhysRevA.31.1695
  • Arroyo M, Belytschko T. Finite crystal elasticity of carbon nanotubes based on the exponential Cauchy–Born rule. Phys Rev B. 2004;69:1–11. 115415. doi: 10.1103/PhysRevB.69.115415
  • Mylvaganam K, Zhang LC. Important issues in a molecular dynamics simulation for characterising the mechanical properties of carbon nanotubes. Carbon. 2004;42:2025. doi: 10.1016/j.carbon.2004.04.004
  • Hao X, Qiang H, Xiaohu Y. Buckling of defective single-walled and double-walled carbon nanotubes under axial compression by molecular dynamics simulation. Compos Sci Technol. 2008;68:1809–1814. doi: 10.1016/j.compscitech.2008.01.013

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.