659
Views
2
CrossRef citations to date
0
Altmetric
Articles

Molecular dynamics free energy simulations of ATP:Mg2+ and ADP:Mg2+ using the polarisable force field AMOEBA

, &
Pages 439-448 | Received 10 Sep 2019, Accepted 23 Jan 2020, Published online: 14 Feb 2020

References

  • Simonson T, Satpati P. Simulating GTP:Mg and GDP:Mg with a simple force field: a structural and thermodynamic analysis. J Comput Chem. 2013;34(10):836–846. doi: 10.1002/jcc.23207
  • Tewari Y, Goldberg R, Advani J, et al. Thermodynamics of the disproportionation of adenosine 5′-diphosphate to adenosine 5′-triphosphate and adenosine 5′-monophosphate. Biophysical Chemistry. 2018;40(3):263–276. doi: 10.1016/0301-4622(91)80025-M
  • Koch O, Cappel D, Nocker M, et al. Molecular dynamics reveal binding mode of glutathionylspermidine by trypanothione synthetase. Plos One. 2013;8(2):e56788. doi: 10.1371/journal.pone.0056788
  • Pfaendtner J, Branduardi D, Parrinello M, et al. Nucleotide-dependent conformational states of actin. Proc. Natl. Acad. Sci. U.S.A. 2009;106(31):12723–12728. doi: 10.1073/pnas.0902092106
  • Yang W, Gao YQ, Cui Q, et al. The missing link between thermodynamics and structure in f1-atpase. P Natl Acad Sci USA. 2003;100(3):874–879. doi: 10.1073/pnas.0337432100
  • Gao YQ, Yang W, Karplus M. A structure-based model for the synthesis and hydrolysis of ATP by f-1-atpase. Cell. 2005;123(2):195–205. doi: 10.1016/j.cell.2005.10.001
  • Satpati P, Clavaguera C, Ohanessian G, et al. Free energy simulations of a gtpase: GTP and GDP binding to archaeal initiation factor 2. J Phys Chem B. 2011;115(20):6749–6763. doi: 10.1021/jp201934p
  • Satpati P, Simonson T. Conformational selection through electrostatics: free energy simulations of GTP and GDP binding to archaeal initiation factor 2. Proteins. 2012;80(5):1264–1282. doi: 10.1002/prot.24023
  • Bax B, Chung CW, Edge C. Getting the chemistry right: protonation, tautomers and the importance of h atoms in biological chemistry. Acta Crystallogr D Struct Biol. 2017;73(2):131–140. doi: 10.1107/S2059798316020283
  • Priess M, Goddeke H, Groenhof G, et al. Molecular mechanism of ATP hydrolysis in an ABC transporter. Acs Central Sci. 2018;4 (10):1334–1343. doi: 10.1021/acscentsci.8b00369
  • Harrison CB, Schulten K. Quantum and classical dynamics simulations of ATP hydrolysis in solution. J Chem Theory Comput. 2012;8(7):2328–2335. doi: 10.1021/ct200886j
  • Ito Y, Ikeguchi M. Mechanism of the alphabeta conformational change in f1-atpase after ATP hydrolysis: free-energy simulations. Biophys J. 2015;108(1):85–97. doi: 10.1016/j.bpj.2014.11.1853
  • Nam K, Pu J, Karplus M. Trapping the ATP binding state leads to a detailed understanding of the f1-atpase mechanism. P Natl Acad Sci USA. 2014;111(50):17851–17856. doi: 10.1073/pnas.1419486111
  • Faver JC, Yang W, Merz KM. Jr., The effects of computational modeling errors on the estimation of statistical mechanical variables. J Chem Theory Comput. 2012;8(10):3769–3776. doi: 10.1021/ct300024z
  • Thompson D, Simonson T. Molecular dynamics simulations show that bound mg2+ contributes to amino acid and aminoacyl adenylate binding specificity in aspartyl-trna synthetase through long range electrostatic interactions. J Biol Chem. 2006;281(33):23792–23803. doi: 10.1074/jbc.M602870200
  • Savelyev A, MacKerell AD. Competition among li+, na+, k+, and rb+ monovalent ions for DNA in molecular dynamics simulations using the additive charmm36 and drude polarizable force fields. J Phys Chem B. 2015;119(12):4428–4440. doi: 10.1021/acs.jpcb.5b00683
  • Jiao D, Golubkov PA, Darden TA, et al. Calculation of protein-ligand binding free energy by using a polarizable potential. P Natl Acad Sci USA. 2008;105(17):6290–6295. doi: 10.1073/pnas.0711686105
  • Jiao D, Zhang JJ, Duke RE, et al. Trypsin-ligand binding free energies from explicit and implicit solvent simulations with polarizable potential. J Comput Chem. 2009;30(11):1701–1711. doi: 10.1002/jcc.21268
  • Ponder JW, Wu CJ, Ren PY, et al. Current status of the amoeba polarizable force field. J Phys Chem B. 2010;114(8):2549–2564. doi: 10.1021/jp910674d
  • Wu JC, Piquemal JP, Chaudret R, et al. Polarizable molecular dynamics simulation of Zn(ii) in water using the amoeba force field. J Chem Theory Comput. 2010;6(7):2059–2070. doi: 10.1021/ct100091j
  • Zhang JJ, Yang W, Piquemal JP, et al. Modeling structural coordination and ligand binding in zinc proteins with a polarizable potential. J Chem Theory Comput. 2012;8(4):1314–1324. doi: 10.1021/ct200812y
  • Huang J, Lopes PEM, Roux B, et al. Recent advances in polarizable force fields for macromolecules: microsecond simulations of proteins using the classical drude oscillator model. J Phys Chem Lett. 2014;5(18):3144–3150. doi: 10.1021/jz501315h
  • Mu XJ, Wang QT, Wang LP, et al. Modeling organochlorine compounds and the sigma-hole effect using a polarizable multipole force field. J Phys Chem B. 2014;118(24):6456–6465. doi: 10.1021/jp411671a
  • Shi Y, Ren PY, Schnieders M, et al. Polarizable force fields for biomolecular modeling. Rev Comp Ch. 2015;28:51–86.
  • Bell DR, Qi R, Jing Z, et al. Calculating binding free energies of host-guest systems using the amoeba polarizable force field. Phys Chem Chem Phys. 2016;18(44):30261–30269. doi: 10.1039/C6CP02509A
  • Harger M, Li D, Wang Z, et al. Tinker-openMM: absolute and relative alchemical free energies using AMOEBA on GPUs. J Comput Chem. 2017;38(23):2047–2055. doi: 10.1002/jcc.24853
  • Jing ZF, Qi R, Liu CW, et al. Study of interactions between metal ions and protein model compounds by energy decomposition analyses and the amoeba force field. J Chem Phys. 2017;147(16):161733. doi: 10.1063/1.4985921
  • Mackerell AD. Jr., Empirical force fields for biological macromolecules: overview and issues. J Comput Chem. 2004;25(13):1584–1604. doi: 10.1002/jcc.20082
  • Patel S, Brooks CL. 3rd, Charmm fluctuating charge force field for proteins: I parameterization and application to bulk organic liquid simulations. J Comput Chem. 2004;25(1):1–15. doi: 10.1002/jcc.10355
  • Patel S, Mackerell AD, Brooks CL. Charmm fluctuating charge force field for proteins: Ii – protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model. J Comput Chem. 2004;25(12):1504–1514. doi: 10.1002/jcc.20077
  • Baker CM, Anisimov VM, MacKerell AD. Development of charmm polarizable force field for nucleic acid bases based on the classical drude oscillator model. J Phys Chem B. 2011;115(3):580–596. doi: 10.1021/jp1092338
  • Savelyev A, MacKerell AD. Balancing the interactions of ions, water, and DNA in the drude polarizable force field. J Phys Chem B. 2014;118(24):6742–6757. doi: 10.1021/jp503469s
  • Hamelberg D, McCammon JA. Standard free energy of releasing a localized water molecule from the binding pockets of proteins: double-decoupling method. J. Am. Chem. Soc. 2004;126(24):7683–7689. doi: 10.1021/ja0377908
  • Kobayashi E, Yura K, Nagai Y. Distinct conformation of ATP molecule in solution and on protein. Biophysics (Nagoya-shi). 2013;9:1–12. doi: 10.2142/biophysics.9.1
  • Simonson T, Roux B. Concepts and protocols for electrostatic free energies. Mol Simulat. 2016;42(13):1090–1101. doi: 10.1080/08927022.2015.1121544
  • Rackers JA, Wang Z, Lu C, et al. Tinker 8: software tools for molecular design. J Chem Theory Comput. 2018;14(10):5273–5289. doi: 10.1021/acs.jctc.8b00529
  • Zhang C, Lu C, Jing Z, et al. Amoeba polarizable atomic multipole force field for nucleic acids. J Chem Theory Comput. 2018;14(4):2084–2108. doi: 10.1021/acs.jctc.7b01169
  • Wu JC, Chattree G, Ren P. Automation of amoeba polarizable force field parameterization for small molecules. Theor Chem Acc. 2012;131(3):1138. doi: 10.1007/s00214-012-1138-6
  • Swartz MA, Tubergen PJ, Tatko CD, et al. Experimental determination of pK(a) values and metal binding for biomolecular compounds using p-31 NMR spectroscopy. J Chem Educ. 2018;95(1):182–185. doi: 10.1021/acs.jchemed.7b00508
  • Bogusz S, Cheatham TE, Brooks BR. Removal of pressure and free energy artifacts in charged periodic systems via net charge corrections to the Ewald potential. J Chem Phys. 1998;108(17):7070–7084. doi: 10.1063/1.476320
  • Lin YL, Aleksandrov A, Simonson T, et al. An overview of electrostatic free energy computations for solutions and proteins. J Chem Theory Comput. 2014;10(7):2690–2709. doi: 10.1021/ct500195p

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.