309
Views
1
CrossRef citations to date
0
Altmetric
Articles

Multiscale computational prediction of β-sheet peptide self-assembly morphology

& ORCID Icon
Pages 428-438 | Received 26 Dec 2019, Accepted 24 Feb 2020, Published online: 16 Mar 2020

References

  • Wang ZG, Ding BQ. Engineering DNA self-assemblies as templates for functional nanostructures. Acc Chem Res. 2014;47(6):1654–1662. doi: 10.1021/ar400305g
  • De Santis E, Ryadnov MG. Peptide self-assembly for nanomaterials: the old new kid on the block. Chem Soc Rev. 2015;44(22):8288–8300. doi: 10.1039/C5CS00470E
  • Grabow WW, Jaeger L. RNA self-assembly and RNA nanotechnology. Acc Chem Res. 2014;47(6):1871–1880. doi: 10.1021/ar500076k
  • Yan XH, Cui Y, He Q, et al. Reversible transitions between peptide nanotubes and vesicle-like structures including theoretical modeling studies. Chem Eur J. 2008;14(19):5974–5980. doi: 10.1002/chem.200800012
  • Cui H, Muraoka T, Cheetham AG, et al. Self-assembly of giant peptide nanobelts. Nano Lett. 2009;9(3):945–951. doi: 10.1021/nl802813f
  • Adamcik J, Castelletto V, Bolisetty S, et al. Direct observation of time-resolved polymorphic states in the self-assembly of end-capped heptapeptides. Angew Chem Int Ed. 2011;50(24):5495–5498. doi: 10.1002/anie.201100807
  • Morris KL, Zibaee S, Chen L, et al. The structure of cross-beta tapes and tubes formed by an octapeptide, αSβ1. Angew Chem Int Ed. 2013;52(8):2279–2283. doi: 10.1002/anie.201207699
  • Knowles TPJ, Buehler MJ. Nanomechanics of functional and pathological amyloid materials. Nat Nanotechnol. 2011;6(8):469–479. doi: 10.1038/nnano.2011.102
  • Castelletto V, Hamley IW, Cenker C, et al. Influence of salt on the self-assembly of two model amyloid heptapeptides. J Phys Chem B. 2010;114(23):8002–8008. doi: 10.1021/jp102744g
  • Hamley IW, Nutt DR, Brown GD, et al. Influence of the solvent on the self-assembly of a modified amyloid beta peptide fragment. II. NMR and computer simulation investigation. J Phys Chem B. 2010;114(2):940–951. doi: 10.1021/jp906107p
  • Zhao YR, Wang JQ, Deng L, et al. Tuning the self-assembly of short peptides via sequence variations. Langmuir. 2013;29(44):13457–13464. doi: 10.1021/la402441w
  • Zhao YR, Deng L, Wang JQ, et al. Solvent controlled structural transition of KI4K self-assemblies: from nanotubes to nanofibrils. Langmuir. 2015;31(47):12975–12983. doi: 10.1021/acs.langmuir.5b02303
  • Pappas CG, Shafi R, Sasselli IR, et al. Dynamic peptide libraries for the discovery of supramolecular nanomaterials. Nat Nanotechnol. 2016;11(11):960–967. doi: 10.1038/nnano.2016.169
  • Knowles TP, Fitzpatrick AW, Meehan S, et al. Role of intermolecular forces in defining material properties of protein nanofibrils. Science. 2007;318(5858):1900–1903. doi: 10.1126/science.1150057
  • Fitzpatrick AWP, Debelouchina GT, Bayro MJ, et al. Atomic structure and hierarchical assembly of a cross-beta amyloid fibril. Proc Natl Acad Sci USA. 2013;110(14):5468–5473. doi: 10.1073/pnas.1219476110
  • Colletier JP, Laganowsky A, Landau M, et al. Molecular basis for amyloid-beta polymorphism. Proc Natl Acad Sci USA. 2011;108(41):16938–16943. doi: 10.1073/pnas.1112600108
  • Nelson R, Sawaya MR, Balbirnie M, et al. Structure of the cross-beta spine of amyloid-like fibrils. Nature. 2005;435(7043):773–778. doi: 10.1038/nature03680
  • Sawaya MR, Sambashivan S, Nelson R, et al. Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature. 2007;447(7143):453–457. doi: 10.1038/nature05695
  • Fitzpatrick AWP, Vanacore GM, Zewail AH. Nanomechanics and intermolecular forces of amyloid revealed by four-dimensional electron microscopy. Proc Natl Acad Sci USA. 2015;112(11):3380–3385. doi: 10.1073/pnas.1502214112
  • Schmidt A, Annamalai K, Schmidt M, et al. Cryo-EM reveals the steric zipper structure of a light chain-derived amyloid fibril. Proc Natl Acad Sci USA. 2016;113(22):6200–6205. doi: 10.1073/pnas.1522282113
  • Mehta AK, Lu K, Childers WS, et al. Facial symmetry in protein self-assembly. J Am Chem Soc. 2008;130(30):9829–9835. doi: 10.1021/ja801511n
  • Paravastu AK, Leapman RD, Yau WM, et al. Molecular structural basis for polymorphism in Alzheimer's beta-amyloid fibrils. Proc Natl Acad Sci USA. 2008;105(47):18349–18354. doi: 10.1073/pnas.0806270105
  • Petkova AT, Leapman RD, Guo ZH, et al. Self-propagating, molecular-level polymorphism in Alzheimer's beta-amyloid fibrils. Science. 2005;307(5707):262–265. doi: 10.1126/science.1105850
  • Pashuck ET, Stupp SI. Direct observation of morphological tranformation from twisted ribbons into helical ribbons. J Am Chem Soc. 2010;132(26):8819–8821. doi: 10.1021/ja100613w
  • Lee HY, Oh H, Lee JH, et al. Shedding light on helical microtubules: real-time observations of microtubule self-assembly by light microscopy. J Am Chem Soc. 2012;134(35):14375–14381. doi: 10.1021/ja3031856
  • Thirumalai D, Reddy G, Straub JE. Role of water in protein aggregation and amyloid polymorphism. Acc Chem Res. 2012;45(1):83–92. doi: 10.1021/ar2000869
  • Nguyent P, Derreumaux P. Understanding amyloid fibril nucleation and a beta oligomer/drug interactions from computer simulations. Acc Chem Res. 2014;47(2):603–611. doi: 10.1021/ar4002075
  • Morriss-Andrews A, Shea JE. computational studies of protein aggregation: methods and applications. Annu Rev Phys Chem. 2015;66(1):643–666. doi: 10.1146/annurev-physchem-040513-103738
  • Gnanakaran S, Nussinov R, Garcia AE. atomic-level description of amyloid beta-dimer formation. J Am Chem Soc. 2006;128(7):2158–2159. doi: 10.1021/ja0548337
  • Wei GH, Jewett AI, Shea JE. Structural diversity of dimers of the Alzheimer amyloid-beta(25-35) peptide and polymorphism of the resulting fibrils. Phys Chem Chem Phys. 2010;12(14):3622–3629. doi: 10.1039/c000755m
  • Deng L, Zhou P, Zhao YR, et al. Molecular origin of the self-assembled morphological difference caused by varying the order of charged residues in short peptides. J Phys Chem B. 2014;118(43):12501–12510. doi: 10.1021/jp506385j
  • Mondal J, Yethiraj A. Driving force for the association of amphiphilic molecules. J Phys Chem Lett. 2011;2(19):2391–2395. doi: 10.1021/jz201046x
  • Ndlovu H, Ashcroft AE, Radford SE, et al. Effect of sequence variation on the mechanical response of amyloid fibrils probed by steered molecular dynamics simulation. Biophys J. 2012;102(3):587–596. doi: 10.1016/j.bpj.2011.12.047
  • Marrink SJ, Tieleman DP. Perspective on the martini model. Chem Soc Rev. 2013;42(16):6801–6822. doi: 10.1039/c3cs60093a
  • Guo C, Luo Y, Zhou RH, et al. Probing the self-assembly mechanism of diphenylalanine-based peptide nanovesicles and nanotubes. ACS Nano. 2012;6(5):3907–3918. doi: 10.1021/nn300015g
  • Nyrkova I, Semenov AN, Aggeli A, et al. Fibril stability in solutions of twisted-sheet peptides: a new kind of micellization in chiral systems. Eur Phys J B. 2000;17(3):481–497. doi: 10.1007/s100510070127
  • Aggeli A, Nyrkova IA, Bell M, et al. Hierarchical self-assembly of chiral rod-like molecules as a model for peptide beta-sheet tapes, ribbons, fibrils, and fibers. Proc Natl Acad Sci USA. 2001;98(21):11857–11862. doi: 10.1073/pnas.191250198
  • Deng L, Zhao YR, Xu H, et al. Intrinsic defect formation in peptide self-assembly. Appl Phys Lett. 2015;107(4):043701. doi: 10.1063/1.4927708
  • Jorgensen WL, Maxwell DS, Titado-Rives J. Development and testing of the opls all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc. 1996;118(45):11225–11236. doi: 10.1021/ja9621760
  • Jorgensen WL, William L, Chandrasekhar J, et al. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79(2):926–935. doi: 10.1063/1.445869
  • DeLano WL. The PyMOL molecular graphics system. Palo Alto (CA): DeLano Scientific LLC; 2002.
  • Van der Spoel D, Lindahl E, Hess B, et al. GROMACS: fast, flexible, and free. J Comput Chem. 2005;26(16):1701–1718. doi: 10.1002/jcc.20291
  • Darden T, York D, Pedersen L. Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. J Chem Phys. 1993;98(12):10089–10092. doi: 10.1063/1.464397
  • Nose S. A molecular dynamics method for simulations in the canonical ensemble. Mol Phys. 1984;52(2):255–268. doi: 10.1080/00268978400101201
  • Parrinello M, Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys. 1981;52(12):7182–7190. doi: 10.1063/1.328693
  • Kutzner C, Czub J, Grubmuller H. Keep it flexible: driving macromolecular rotary motions in atomistic simulations with GROMACS. J Chem Theor Comput. 2011;7(5):1381–1393. doi: 10.1021/ct100666v
  • Kumar S, Bouzida D, Swendsen RH, et al. The weighted histogram analysis method for free energy calculations on biomolecules. I. The method. J Comb Chem. 1992;13(8):1011–1021. doi: 10.1002/jcc.540130812
  • Hukushima K, Nemoto K. Exchange Monte Carlo method and application to spin glass simulations. J Phys Soc Jpn. 1996;65(6):1604–1608. doi: 10.1143/JPSJ.65.1604
  • Sugita Y, Okamoto Y. Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett. 1999;314(1):142–151.
  • Chong SH, Ham S. Impact of chemical heterogeneity on protein self-assembly in water. Proc Natl Acad Sci USA. 2012;109(20):7636–7641. doi: 10.1073/pnas.1120646109

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.