176
Views
1
CrossRef citations to date
0
Altmetric
Articles

Molecular dynamics simulations on aqueous solution confined in charged nanochannels: asymmetric effect of surface charge

, , , &
Pages 796-804 | Received 06 Nov 2019, Accepted 16 May 2020, Published online: 08 Jun 2020

References

  • Israelachvili J. Intermolecular and surface forces. 3rd ed. San Diego (CA): Academic Press; 2010.
  • Karniadakis G, Beskok A, Aluru A. Mircroflows and nanoflows: fundamental and simulation. New York (NY): Springer; 2005.
  • Lyklema J. Fundamentals of interface and colloid science: Vol. 2 solid-liquid interfaces. San Diego (CA): Academic Press; 1995.
  • Freund B. Electro-osmosis in a nanometer-scale channel studied by atomistic simulation. J Chem Phys. 2002;116:2194–2200. doi: 10.1063/1.1431543
  • Qiao R, Aluru R. Ion concentrations and velocity profiles in nanochannel electroosmotic flows. J Chem Phys. 2003;118:4692–4701. doi: 10.1063/1.1543140
  • Cazade PA, Hartkamp R, Coasne B. Structure and dynamics of an electrolyte confined in charged nanopores. J Phys Chem C. 2014;118:5061–5072. doi: 10.1021/jp4098638
  • Dukhin A, Dukhin S, Goetz P. Electrokinetics at high ionic strength and hypothesis of the double layer with zero surface charge. Langmuir. 2005;21:9990–9997. doi: 10.1021/la050480d
  • Allen P, Tildesley J. Computer simulation of liquids. Oxford: Clarendon Press; 1987.
  • Rapaport C. The art of molecular dynamics simulations. Cambridge: Cambridge University Press; 1995.
  • Zhu B, Philpott R, Glosli N. Comparison of water models in simple electric double layers (No. tr-11). IBM Almaden Research Center, San Jose (CA); 1994.
  • Qiao R, Aluru R. Atomistic simulation of KCl transport in charged silicon nanochannels: interfacial effects. Colloids Surf A Physicochem Eng Asp. 2005;267:103–109. doi: 10.1016/j.colsurfa.2005.06.067
  • Zhu W, Singer J, Zheng Z, et al. Electro-osmotic flow of a model electrolyte. Phys Rev E. 2005;71:041501. doi: 10.1103/PhysRevE.71.041501
  • Kim D, Darve E. Molecular dynamics simulation of electro-osmotic flows in rough wall nanochannels. Phys Rev E. 2006;73:051203. doi: 10.1103/PhysRevE.73.051203
  • Kim D, Darve E. High-ionic-strength electroosmotic flows in uncharged hydrophobic nanochannels. J Colloid Interface Sci. 2009;330:194–200. doi: 10.1016/j.jcis.2008.10.029
  • Huang M, Bizonne C, Ybert C, et al. Aqueous electrolytes near hydrophobic surfaces: dynamic effects of ion specificity and hydrodynamic slip. Langmuir. 2008;24:1442–1450. doi: 10.1021/la7021787
  • Blank M. Electrical double layers in biology. New York: Plenum Press; 1986.
  • Steele WA. The physical interaction of gases with crystalline solids: I. Gas-solid energies and properties of isolated adsorbed atoms. Surf Sci. 1973;36:317–352. doi: 10.1016/0039-6028(73)90264-1
  • Elliott SR. Physics of amorphous materials. 2nd ed. New York (NY): John& Sons; 1990.
  • Cygan RT. Molecular modeling in mineralogy and geochemistry. Rev Mineral Geochem. 2001;42:1–35. doi: 10.2138/rmg.2001.42.1
  • Qiu Y, Chen Y. Counterions and water molecules in charged silicon nanochannels: the influence of surface charge discreteness. Mol Sim. 2014;41:1187–1192. doi: 10.1080/08927022.2014.961017
  • Yang W, Jin X, Liao Q. Ewald summation for uniformly charged surface. J Chem Theory Comput. 2006;2:1618–1623. doi: 10.1021/ct600083s
  • Hoang H, Kang S, Suh K. Molecular dynamics study on the effect of solution-wall interaction potential on the properties of solution in uniformly charged hydrophobic channel. J Mech Sci Tech. 2010;24:1401–1410. doi: 10.1007/s12206-010-0412-6
  • Schoen M, Diestler DJ, Cushman JH. Fluids in micropores. I. Structure of a simple classical fluid in a slit-pore. J Chern Phys. 1987;87:5464–5476. doi: 10.1063/1.453665
  • Gubbins KE, Quirke N. Molecular simulation and industrial applications: methods, examples, and prospects. Amsterdam: Gordon and Breach Science Publishers; 1996.
  • Lee T, MacCammon A, Rossky J. The structure of liquid water at an extended hydrophobic surface. J Chem Phys. 1984;80:4448–4455. doi: 10.1063/1.447226
  • Kumar P, Buldyrev V, Starr W, et al. Thermodynamics, structure, and dynamics of water confined between hydrophobic plates. Phys Rev E. 2005;72:051503. doi: 10.1103/PhysRevE.72.051503
  • Kumar P, Starr W, Buldyrev V, et al. Effect of water-wall interaction potential on the properties of nanoconfined water. Phys Rev E. 2007;75:011202. doi: 10.1103/PhysRevE.75.011202
  • Berendsen HJC, Grigera JR, Straatsma TP. The missing term in effective pair potentials. J Phys Chem. 1987;91:6269–6271. doi: 10.1021/j100308a038
  • Ungerer P, Tavitian B, Boutin A. Applications of molecular simulation in the oil and gas industry. Paris: Technip; 2005.
  • Berendsen HJC, Postma JPM, van Gunsteren WF, et al. Molecular dynamics with coupling to an external bath. J Chem Phys. 1984;81:3684–3690. doi: 10.1063/1.448118
  • Yeh C, Berkowitz L. Ewald summation for systems with slab geometry. J Chem Phys. 1999;111:3155–3162. doi: 10.1063/1.479595
  • Toukmaji AY, Board JA Jr. Ewald summation techniques in perspective: a survey. Comput Phys Commun. 1996;95:73–92. doi: 10.1016/0010-4655(96)00016-1
  • Deserno M, Holm C. How to mesh up Ewald sums. II. An accurate error estimate for the particle–particle–particle-mesh algorithm. J Chem Phys. 1998;109:7694–7701. doi: 10.1063/1.477415
  • Press H, Teukolsky A, Vetterling T, et al. Numerical recipes in the Fortran. 2nd ed. Cambridge: Cambridge University Press; 1992.
  • Hoang H. Molecular dynamics simulations on fluids confined in nano-channels [master’s thesis]. Dong A University; 2009.
  • Hoang H, Kang S, Suh YK. Molecular-dynamic simulation on the statical and dynamical properties of fluids in a nano-channel. J Comput Fluids Eng. 2009;13:24.
  • Lyubartsev P, Laaksonen A. Concentration effects in aqueous NaCl solutions. A molecular dynamics simulation. J. Phys. Chem. 1996;100:16410–16418. doi: 10.1021/jp961317h
  • Magda JJ, Tirrell M, Davis HT. Molecular dynamics of narrow, liquid-filled pores. J Chem Phys. 1985;83:1888–1901. doi: 10.1063/1.449375
  • Hoang H, Galliero G. Grand canonical-like molecular dynamics simulations: application to anisotropic mass diffusion in a nanoporous medium. J Chem Phys. 2012;136:184702. doi: 10.1063/1.4712139
  • Zaragoza A, Gonzalez MA, Joly L, et al. Molecular dynamics study of nanoconfined TIP4P/2005 water: how confinement and temperature affect diffusion and viscosity. Phys Chem Chem Phys. 2019;21:13653–13667. doi: 10.1039/C9CP02485A

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.