835
Views
1
CrossRef citations to date
0
Altmetric
Articles

Review of the Frenkel–Ladd technique for computing free energies of crystalline solids

, &
Pages 824-830 | Received 13 Mar 2020, Accepted 20 May 2020, Published online: 15 Jun 2020

References

  • Hill TL. An introduction to statistical thermodynamics. Dover Publications; 1986. (Addison-Wesley series in chemistry).
  • Frenkel D, Smit B. Understanding molecular simulation: from algorithms to applications. 2nd ed. New York: Academic Press; 2002.
  • Widom B. Some topics in the theory of fluids. J Chem Phys. 1963;39(11):2808–2812.
  • Hoover WG, Ree FH. Melting transition and communal entropy for hard spheres. J Chem Phys. 1968;49(8):3609–3617.
  • Hansen J-P, Verlet L. Phase transitions of the Lennard–Jones system. Phys Rev. 1969;184(1):151–161.
  • Frenkel D, Ladd AJC. New Monte Carlo method to compute the free energy of arbitrary solids. application to the fcc and hcp phases of hard spheres. J Chem Phys. 1984;81(7):3188–3193.
  • Monson PA, Kofke DA. Solid-fluid equilibrium: insights from simple molecular models. In Prigogine I and Rice SA, editors, Advances in Chemical Physics. John Wiley & Sons, Ltd; 2000. p. 113–179.
  • Vega C, Sanz E, Abascal JLF, Noya EG. Determination of phase diagrams via computer simulation: methodology and applications to water, electrolytes and proteins. J Phys Condens Matter. 2008;20(15):153101.
  • Aragones JL, Noya EG, Valeriani C, et al. Free energy calculations for molecular solids using gromacs. J Chem Phys. 2013;139(3):034104.
  • Barroso MA, Ferreira AL. Solid–fluid coexistence of the Lennard–Jones system from absolute free energy calculations. J Chem Phys. 2002;116(16):7145–7150.
  • Yakub L, Yakub E. Absolute Helmholtz free energy of highly anharmonic crystals: theory vs Monte Carlo. J Chem Phys. 2012;136:144508.
  • Aragones JL, Valeriani C, Vega C. Free energy calculations for atomic solids through the einstein crystal/molecule methodology using Gromacs and Lammps. J Chem Phys. 2012;137:146101.
  • Bresme F, Vega C, Abascal JLF. Order-disorder transition in the solid phase of a charged hard sphere model. Phys Rev Lett. 2000;85(15):3217–3220.
  • Vega C, Abascal JLF, McBride C, et al. The fluid–solid equilibrium for a charged hard sphere model revisited. J Chem Phys. 2003;119(2):964–971.
  • Anwar J, Frenkel D, Noro MG. Calculation of the melting point of nacl by molecular simulation. J Chem Phys. 2003;118(2):728–735.
  • Rodrigues PCR, Silva Fernandes FMS. Phase diagrams of alkali halides using two interaction models: a molecular dynamics and free energy study. J Chem Phys. 2007;126:024503.
  • Hagen MHJ, Frenkel D. Determination of phase diagrams for the hard–core attractive yukawa system. J Chem Phys. 1994;101(5):4093–4097.
  • Loomba E, Almarza NG. Role of the interaction range in the shaping of phase diagrams in simple fluids. the hard sphere yukawa fluid as a case study. J Chem Phys. 1994;100(11):8367–8372.
  • Hynninen A-P, Leunissen ME, van Blaaderen A, et al. Cuau structure in the restricted primitive model and oppositely charged colloids. Phys Rev Lett. 2006;96(1):018303.
  • Ghiringhelli LM, Los JH, Meijer EJ, et al. Modeling the phase diagram of carbon. Phys Rev Lett. 2005;94(14):145701.
  • Vega C, Noya EG. Revisiting the frenkel-ladd method to compute the free energy of solids: the Einstein molecule approach. J Chem Phys. 2007;127(15):154113.
  • Polson JM, Frenkel D. Numerical prediction of the melting curve of n-octane. J Chem Phys. 1999;111(4):1501–1510.
  • Habershon S, Manolopoulos DE. Free energy calculations for a flexible water model. Phys Chem Chem Phys. 2011;13:19714–19727.
  • Sellers MS, Lisal M, Brennan JK. Free-energy calculations using classical molecular simulation: application to the determination of the melting point and chemical potential of a flexible rdx model. Phys Chem Chem Phys. 2016;18:7841–7850.
  • Malanoski AP, Monson PA. The high density equation of state and solid–fluid equilibrium in systems of freely jointed chains of tangent hard spheres. J Chem Phys. 1997;107:6899–6907.
  • Frenkel D, Mulder BM. The hard ellipsoid-of-revolution fluid. Mol Phys. 1985;55(5):1171–1192.
  • Vega C, Paras EPA, Monson PA. Solid–fluid equilibria for hard dumbbells via Monte Carlo simulation. J Chem Phys. 1992;96(12):9060–9072.
  • Vega C, Paras EPA, Monson PA. On the stability of the plastic crystal phase of hard dumbbell solids. J Chem Phys. 1992;97(11):8543–8548.
  • Cao M, Monson PA. A study of the phase behavior of a simple model of chiral molecules and enantiomeric mixtures. J Chem Phys. 2005;122:054505.
  • Vega C, Sanz E, Abascal JLF. The melting temperature of the most common models of water. J Chem Phys. 2005;122:114507.
  • Vega C, Abascal JLF. Simulating water with rigid non-polarble models: a general perspective. Phys Chem Chem Phys. 2011;13:19663–19688.
  • Wierzchowski SJ, Monson PA. Calculating the phase behavior of gas-hydrate-forming systems from molecular models. Ind Eng Chem Res. 2006;45(1):424–431.
  • Pimpalgaonkar H, Veesam SK, Punnathanam SN. Theory of gas hydrates: effect of the approximation of rigid water lattice. J Phys Chem B. 2011;115:10018–10026.
  • Ravipati S, Punnathanam SN. Improving the rigor and consistency of the thermodynamic theory for clathrate hydrates through incorporation of movement of water molecules of hydrate lattice. J Phys Chem C. 2015;119:12365–12377.
  • Schroer JW, Monson PA. Phase behavior of a hard sphere interaction site model of benzene. J Chem Phys. 2000;112(20):8950–8957.
  • Schroer JW, Monson PA. Phase equilibrium in a quadrupolar hard sphere interaction site model of benzene. J Chem Phys. 2001;114(9):4124–4130.
  • Shen WN, Monson PA. Solid–fluid equilibrium in a nonlinear hard sphere triatomic model of propane. J Chem Phys. 1995;103(22):9756–9762.
  • Malanoski AP, Monson PA. Solid–fluid equilibrium in molecular models of n-alkane. J Chem Phys. 1999;110:664–675.
  • Noya EG, Conde MM, Vega C. Computing the free energy of molecular solids by the einstein molecule approach: ices xiii and xiv, hard-dumbbells and a patchy model of proteins. J Chem Phys. 2008;129:104704.
  • Reddy A RK, Punnathanam SN. Calculation of excess free energy of molecular solids comprised of flexible molecules using einstein molecule method. Mol Sim. 2018;44(10):781–788.
  • Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comp Phys. 1995;117(1):1–19.
  • Hess B, Kutzner C, Van Der Spoel D, et al. Gromacs 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput. 2008;4(3):435–447.
  • Schilling T, Schmid F. Computing absolute free energies of disordered structures by molecular simulation. J Chem Phys. 2009;131:231102.
  • Speedy RJ. The entropy of a glass. Mol Phys. 1993;80(5):1105–1120.
  • Sweatman MB, Atamas AA, Leyssale J-M. The self-referential method combined with thermodynamic integration. J Chem Phys. 2008;128(6):064102.
  • Sweatman MB. Comparison of absolute free energy calculation methods for fluids and solids. Mol Phys. 2015;113(910):1206–1216.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.