289
Views
1
CrossRef citations to date
0
Altmetric
Articles

Avoiding non-equilibrium effects in adaptive biasing force calculations

, , , , &
Pages 390-394 | Received 16 Mar 2020, Accepted 19 May 2020, Published online: 04 Jun 2020

References

  • Shao Q, Yang L, Zhu W. Selective enhanced sampling in dihedral energy facilitating to overcome the dihedral energy increase in protein folding and accelerating the searching for protein native structure. Phys Chem Chem Phys. 2019;21(20):10423–10435.
  • Ying J, Barnes CA, Louis JM, et al. Importance of time-ordered non-uniform sampling of multi-dimensional NMR spectra of Aβ1-42 peptide under aggregating conditions. J Biomol NMR. 2019;73(8-9):429–441.
  • Akhmatskaya E, Fernandez-Pendas M, Radivojevic T, et al. Adaptive splitting integrators for enhancing sampling efficiency of modified Hamiltonian monte carlo methods in molecular simulation. Langmuir. 2017;33(42):11530–11542.
  • Kono H, Sakuraba S, Ishida H. Correction: free energy profiles for unwrapping the outer superhelical turn of nucleosomal DNA. PLoS Comput Biol. 2019;15(10):e1007439.
  • Lee B L, Kuczera K. Simulating the free energy of passive membrane permeation for small molecules. Mol Simul. 2018;44(13-14):1147–1157.
  • Miao Y, McCammon JA. Unconstrained enhanced sampling for free energy calculations of biomolecules: a review. Mol Simul. 2016;42(13):1046–1055.
  • Fu H, Shao X, Chipot C, et al. Extended adaptive biasing force algorithm. an on-the-fly implementation for accurate free-energy calculations. J Chem Theory Comput. 2016;12(8):3506–3513.
  • Tsukamoto S, Sakae Y, Itoh Y, et al. Study of ligand binding selectivity of histone deacetylases by replica-exchange umbrella sampling molecular dynamics simulations. Biophys J. 2016;110(3):544a–545a.
  • Akhshi P, Wu G. Umbrella sampling molecular dynamics simulations reveal concerted ion movement through G-quadruplex DNA channels. Phys Chem Chem Phys. 2017;19(18):11017–11025.
  • Ghosh S, Jana K, Ganguly B. Revealing the mechanistic pathway of cholinergic inhibition of Alzheimer’s disease by donepezil: a metadynamics simulation study. Phys Chem Chem Phys. 2019;21(25):13578–13589.
  • Sakai Y, Kawaguchi A, Nagata K, et al. Analysis by metadynamics simulation of binding pathway of influenza virus M2 channel blockers. Microbiol Immunol. 2018;62(1):34–43.
  • Lapelosa M. Free energy of binding and mechanism of interaction for the MEEVD-TPR2A peptide-protein complex. J Chem Theory Comput. 2017;13(9):4514–4523.
  • Zhao T, Shao X, Cai W. Free-energy landscapes of the coupled conformational transition and inclusion processes of altro-cyclodextrins. Mol Simul. 2017;43(13-16):977–984.
  • Hénin J, Pohorille A, Chipot C. Insights into the recognition and association of transmembrane a-helices. The free energy of alpha-helix dimerization in glycophorin A. J Am Chem Soc. 2005;127(23):8478–8484.
  • Rodríguez-Gómez D, Darve E, Pohorille A. Assessing the efficiency of free energy calculation methods. J Chem Phys. 2004;120(8):3563–3578.
  • Fu H, Zhang H, Chen H, et al. Zooming across the free-energy landscape: shaving barriers, and flooding valleys. J Phys Chem Lett. 2018;9(16):4738–4745.
  • Zou X, Liu Y, Chen Z, et al. Flow-induced beta-hairpin folding of the glycoprotein ib-alpha beta-switch. Biophys J. 2010;99(4):1182–1191.
  • Wang S, Shao X, Cai W. Solvent and structure effects on the shuttling in pillar[5]arene/triazole rotaxanes. J Phys Chem C. 2017;121(45):25547–25553.
  • Zhang H, Shao X, Dehez F, et al. Modulation of membrane permeability by carbon dioxide. J Comput Chem. 2020;41(5):421–426.
  • Comer J, Gumbart JC, Hénin J, et al. The adaptive biasing force method: everything you always wanted to know but were afraid to ask. J Phys Chem B. 2015;119(3):1129–1151.
  • Chipot C, Hénin J. Exploring the free-energy landscape of a short peptide using an average force. J Chem Phys. 2005;123(24):244906.
  • Chen H, Zhang H, Shao X, et al. Tumbling of anisole units in calixarene promotes its shuttling in rotaxanes. J Phys Chem C. 2019;123(29):18050–18055.
  • Phillips JC, Braun R, Wang W, et al. Scalable molecular dynamics with NAMD. J Comput Chem. 2005;26(16):1781–1802.
  • Jorgensen WL, Chandrasekhar J, Madura JD, et al. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79(2):926–935.
  • MacKerell AD, Bashford D, Bellott M, et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Chem Phys. 1998;102(18):3586–3616.
  • Klauda JB, Venable RM, Freites JA, et al. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B. 2010;114(23):7830–7843.
  • Vanommeslaeghe K, Hatcher E, Acharya C, et al. CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem. 2010;31(4):671–690.
  • Raman EP, Vanommeslaeghe K, Mackerell AD. Site-specific fragment identification guided by single-stepfree energy perturbation calculations. J Chem Theory Comput. 2012;8(10):3513–3525.
  • Wang J, Wolf RM, Caldwell JW, et al. Development and testing of a general amber force field. J Comput Chem. 2004;25(9):1157–1174.
  • Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graphics. 1996;14(1):33–38.
  • Feller S E, Zhang Y, Pastor RW, et al. Constant pressure molecular dynamics simulation: the langevin piston method. J. Chem Phys. 1995;103(11):4613–4621.
  • Darden T, York D, Pedersen L. Particle mesh ewald: an Nlog(N) method for ewald sums in large systems. J Chem Phys. 1993;98(12):10089–10092.
  • Tuckerman M, Berne BJ, Martyna GJ. Reversible multiple time scale molecular dynamics. J Chem Phys. 1992;97(3):1990–2001.
  • Miyamoto S, Kollman PA. Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. J Comput Chem. 1992;13(8):952–962.
  • Ryckaert JP, Ciccotti G, Berendsen HJC. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Chem. 1977;23(3):327–341.
  • Andersen HC. Rattle: A “velocity” version of the SHAKE algorithm for molecular dynamics calculations. J Comput Phys. 1983;52(1):24–34.
  • Park S, Khalili-Araghi F, Tajkhorshid E, et al. Free energy calculation from steered molecular dynamics simulations using Jarzynski’s equality. J Chem Phys. 2003;119(6):3559–3566.
  • Hazel A, Chipot C, Gumbart JC. Thermodynamics of deca-alanine folding in water. J Chem Theory Comput. 2014;10(7):2836–2844.
  • Fu H, Shao X, Cai W, et al. Taming rugged free energy landscapes using an average force. Accounts Chem Res. 2019;52(11):3254–3264.
  • Christian B, Martin K. Multidimensional adaptive umbrella sampling: applications to main chain and side chain peptide conformations. J Comput Chem. 1997;18(12):1450–1462.
  • Wojtas-Niziurski W, Meng Y, Roux B, et al. Self-learning adaptive umbrella sampling method for the determination of free energy landscapes in multiple dimensions. J Chem Theory Comput. 2013;9(4):1885–1895.
  • Barducci A, Bussi G, Parrinello M. Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Phys Rev Lett. 2008;100(2):020603.
  • Salvalaglio M, Tiwary P, Maggioni G, et al. Overcoming time scale and finite size limitations to compute nucleation rates from small scale well tempered metadynamics simulations. J Chem Phys. 2016;145(21):211925.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.