206
Views
6
CrossRef citations to date
0
Altmetric
Articles

A DFT study on the adsorption of SO2 on Alx-C2N (x = 1, 2) monolayer

, ORCID Icon, &
Pages 1147-1154 | Received 17 Feb 2020, Accepted 26 May 2020, Published online: 24 Aug 2020

References

  • Barbir F, Veziroǧlu TN, Plass HJ. Environmental damage due to fossil fuels use. Int J Hydrogen Energy. 1990;15:739–749. doi: 10.1016/0360-3199(90)90005-J
  • Cohen HJ, Drew RT, Johnson JL, et al. Molecular basis of the biological function of molybdenum. The relationship between sulfite oxidase and the acute toxicity of bisulfite and SO2. Proc Natl Acad Sci. 1973;70:3655. doi: 10.1073/pnas.70.12.3655
  • Shokuhi Rad A, Ghasemi Ateni S, Tayebi H-A, et al. First-principles DFT study of SO2 and SO3 adsorption on 2PANI: a model for polyaniline response. J Sulfur Chem. 2016;37:622–631. doi: 10.1080/17415993.2016.1170834
  • Kampa M, Castanas E. Human health effects of air pollution. Environ Pollut. 2008;151:362–367. doi: 10.1016/j.envpol.2007.06.012
  • Glomb S, Woschko D, Makhloufi G, et al. Metal–organic frameworks with internal urea-functionalized dicarboxylate linkers for SO2 and NH3 adsorption. ACS Appl Mater Interfaces. 2017;9:37419–37434. doi: 10.1021/acsami.7b10884
  • Streets DG, Zhang Q, Wu Y. Projections of global mercury emissions in 2050. Environ Sci Technol. 2009;43:2983–2988. doi: 10.1021/es802474j
  • Zhang K, Ren S, Hou Y, et al. Efficient absorption of SO2 with low-partial pressures by environmentally benign functional deep eutectic solvents. J Hazard Mater. 2017;324:457–463. doi: 10.1016/j.jhazmat.2016.11.012
  • Zeng S, Gao H, Zhang X, et al. Efficient and reversible capture of SO2 by pyridinium-based ionic liquids. Chem Eng J. 2014;251:248–256. doi: 10.1016/j.cej.2014.04.040
  • Hao R, Zhang Y, Wang Z, et al. An advanced wet method for simultaneous removal of SO2 and NO from coal-fired flue gas by utilizing a complex absorbent. Chem Eng J. 2017;307:562–571. doi: 10.1016/j.cej.2016.08.103
  • Baltrusaitis J, Cwiertny DM, Grassian V. Adsorption of sulfur dioxide on hematite and goethite particle surfaces. Phys Chem Chem Phys. 2007;9:5542–5554. doi: 10.1039/b709167b
  • Rad AS, Mirabi A, Peyravi M, et al. Nickel-decorated B 12 P 12 nanoclusters as a strong adsorbent for SO2 adsorption: quantum chemical calculations. Can J Phys. 2017;95:958–962. doi: 10.1139/cjp-2017-0119
  • Chen Y, Yin S, Li Y, et al. Curvature dependence of single-walled carbon nanotubes for SO2 adsorption and oxidation. Appl Surf Sci. 2017;404:364–369. doi: 10.1016/j.apsusc.2017.01.225
  • Elder AC, Bhattacharyya S, Nair S, et al. Reactive adsorption of humid SO2 on metal–organic framework nanosheets. J Phys Chem C. 2018;122:10413–10422. doi: 10.1021/acs.jpcc.8b00999
  • Feng Y, Zhou L, Wan Q, et al. Selective hydrogenation of 1,3-butadiene catalyzed by a single Pd atom anchored on graphene: the importance of dynamics. Chem Sci. 2018;9:5890–5896. doi: 10.1039/C8SC00776D
  • Chen D, Zhang X, Tang J, et al. Noble metal (Pt or Au)-doped monolayer MoS2 as a promising adsorbent and gas-sensing material to SO2, SOF2 and SO2F2: a DFT study. Mater Sci Process. 2018;124:1–12. doi: 10.1007/s00339-017-1423-2
  • Gui Y, Chen J, Wang W, et al. Adsorption mechanism of hydrogen sulfide and sulfur dioxide on Au–MoS2 monolayer. Superlattices Microstruct. 2019;135:106280. doi: 10.1016/j.spmi.2019.106280
  • Qian H, Lu W, Wei X, et al. H2s and SO2 adsorption on Pt-MoS2 adsorbent for partial discharge elimination: a DFT study. Results Phys. 2019;12:107–112. doi: 10.1016/j.rinp.2018.11.035
  • Wei HL, Gui Y, Kang J, et al. A DFT study on the adsorption of H2S and SO2 on Ni doped MoS2 monolayer. Nanomaterials. 2018;8.
  • Javeed M, Eun Kwang L, Minbok J, et al. Nitrogenated holey two-dimensional structures. Nat Commun. 2015;6.
  • Zhu L, Xue Q, Li X, et al. C2N: an excellent two-dimensional monolayer membrane for He separation. J Mater Chem A. 2015;3:21351–6. doi: 10.1039/C5TA05700K
  • Qin G, Cui Q, Yun B, et al. High capacity and reversible hydrogen storage on two dimensional C2N monolayer membrane. Int J Hydrogen Energy. 2018;43:9895–9901. doi: 10.1016/j.ijhydene.2018.04.065
  • Bhattacharyya K, Pratik SM, Datta A. Controlled pore sizes in monolayer C2N Act as ultrasensitive probes for detection of gaseous pollutants (HF, HCN, and H2S). J Phys Chem C. 2018;122:2248–2258. doi: 10.1021/acs.jpcc.7b11963
  • Ma D, Ju W, Li T, et al. The adsorption of CO and NO on the MoS2 monolayer doped with Au, Pt, Pd, or Ni: a first-principles study. Appl Surf Sci. 2016;383:98–105. doi: 10.1016/j.apsusc.2016.04.171
  • Ma D, Ju W, Li T, et al. Modulating electronic, magnetic and chemical properties of MoS2 monolayer sheets by substitutional doping with transition metals. Appl Surf Sci. 2016;364:181–189. doi: 10.1016/j.apsusc.2015.12.142
  • Mahmood J, Jung S-M, Kim S-J, et al. Cobalt oxide encapsulated in C2N-h2D network polymer as a catalyst for hydrogen evolution. Chem Mater. 2015;27:4860–4864. doi: 10.1021/acs.chemmater.5b01734
  • Li X, Zhong W, Cui P, et al. Design of efficient catalysts with double transition metal atoms on C2N layer. J Phys Chem Lett. 2016;7:1750–1175. doi: 10.1021/acs.jpclett.6b00096
  • Hashmi A, Farooq MU, Khan I, et al. Ultra-high capacity hydrogen storage in a Li decorated two-dimensional C2N layer. J Mater Chem A. 2017;5:2821–2828. doi: 10.1039/C6TA08924K
  • He BL, Shen JS, Tian ZX. Iron-embedded C2N monolayer: a promising low-cost and high-activity single-atom catalyst for CO oxidation. Phys Chem Chem Phys. 2016;18:24261–9. doi: 10.1039/C6CP03398A
  • Yang Y, Guo M, Zhang G, et al. Tuning the electronic and magnetic properties of porous graphene-like carbon nitride through 3d transition-metal doping. Carbon N Y. 2017;117:120–125. doi: 10.1016/j.carbon.2017.02.069
  • Bing Q, Liu W, Yi W, et al. Ni anchored C2N monolayers as low-cost and efficient catalysts for hydrogen production from formic acid. J Power Sources. 2019;413:399–407. doi: 10.1016/j.jpowsour.2018.12.063
  • Mahmood J, Li F, Kim C, et al. Fe@C2N: a highly-efficient indirect-contact oxygen reduction catalyst. Nano Energy. 2018;44:304–310. doi: 10.1016/j.nanoen.2017.11.057
  • Lin H, Jin R, Wang A, et al. Transition metal embedded C2N with efficient polysulfide immobilization and catalytic oxidation for advanced lithium-sulfur batteries: a first principles study. Ceram Int. 2019;45:17996–18002. doi: 10.1016/j.ceramint.2019.06.018
  • Ma DW, Wang Q, Yan X, et al. 3d transition metal embedded C2N monolayers as promising single-atom catalysts: a first-principles study. Carbon N Y. 2016;105:463–473. doi: 10.1016/j.carbon.2016.04.059
  • Lv Y-a, Zhuang G-l, Wang J-g, et al. Enhanced role of Al or Ga-doped graphene on the adsorption and dissociation of N2O under electric field. Phys Chem Chem Phys. 2011;13:12472–7. doi: 10.1039/c1cp20694j
  • Esrafili MD, Saeidi N, Nematollahi P. A DFT study on SO3 capture and activation over Si- or Al-doped graphene. Chem Phys Lett. 2016;658:146–151. doi: 10.1016/j.cplett.2016.06.045
  • Peyghan AA, Noei M, Tabar MB. A large gap opening of graphene induced by the adsorption of CO on the Al-doped site. J Mol Model. 2013;19:3007–3014. doi: 10.1007/s00894-013-1832-x
  • Ao ZM, Li S, Jiang Q. Correlation of the applied electrical field and CO adsorption/desorption behavior on Al-doped graphene. Solid State Commun. 2010;150:680–683. doi: 10.1016/j.ssc.2009.12.016
  • Rad AS. First principles study of Al-doped graphene as nanostructure adsorbent for NO2 and N2O: DFT calculations. Appl Surf Sci. 2015;357:1217–1224. doi: 10.1016/j.apsusc.2015.09.168
  • Chi M, Zhao Y-P. Adsorption of formaldehyde molecule on the intrinsic and Al-doped graphene: A first principle study. Comput Mater Sci. 2009;46:1085–1090. doi: 10.1016/j.commatsci.2009.05.017
  • Shokuhi Rad A, Pouralijan Foukolaei V. Density functional study of Al-doped graphene nanostructure towards adsorption of CO, CO2 and H2O. Synth Met. 2015;210:171–178. doi: 10.1016/j.synthmet.2015.09.026
  • Weidong W, Yuxiang Z, Cuili S, et al. Adsorption of CO molecules on doped graphene: a first-principles study. AIP Adv. 2016;6:025317–8. doi: 10.1063/1.4942491
  • Peyghan AA, Noei M, Yourdkhani S. Al-doped graphene-like BN nanosheet as a sensor for para-nitrophenol: DFT study. Superlattices Microstruct. 2013;59:115–122. doi: 10.1016/j.spmi.2013.04.005
  • Soltani A, Baei MT, Ghasemi AS, et al. Adsorption of cyanogen chloride over Al- and Ga-doped BN nanotubes. Superlattices Microstruct. 2014;75:564–575. doi: 10.1016/j.spmi.2014.07.033
  • Ma SQ. First-principles study of hydrogen molecules adsorbed on Al-doped BN sheets. Adv Mat Res. 2011;197:701–704.
  • Luo H, Cao Y, Zhou J, et al. Adsorption of NO2, NH3 on monolayer MoS2 doped with Al, Si, and P: a first-principles study. Chem Phys Lett. 2016;643:27–33. doi: 10.1016/j.cplett.2015.10.077
  • Su Y, Ao Z, Ji Y, et al. Adsorption mechanisms of different volatile organic compounds onto pristine C2N and Al-doped C2N monolayer: a DFT investigation. Appl Surf Sci. 2018;450:484–491. doi: 10.1016/j.apsusc.2018.04.157
  • Ma D, Zeng Z, Liu L, et al. Computational evaluation of electrocatalytic nitrogen reduction on TM single-, double-, and triple-atom catalysts (TM = Mn, Fe, Co, Ni) based on graphdiyne monolayers. J Phys Chem C. 2019;123:19066–19076. doi: 10.1021/acs.jpcc.9b05250
  • Delley B. DMol, a standard tool for density functional calculations: review and advances. In: Seminario JM, Politzer P, editor. Theoretical and computational chemistry. Elsevier; 1995. p. 221–254.
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865
  • Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem. 2006;27:1787–1799. doi: 10.1002/jcc.20495
  • Liang Z, Xu B, Xiang H, et al. Carrier-tunable magnetism in two dimensional graphene-like C2N. RSC Adv. 2016;6:54027–54031. doi: 10.1039/C6RA08254H
  • Xu B, Xiang H, Wei Q, et al. Two-dimensional graphene-like C2N: an experimentally available porous membrane for hydrogen purification. Phys Chem Chem Phys. 2015;17:15115–8. doi: 10.1039/C5CP01789K
  • Yong Y, Cui H, Zhou Q, et al. C2n monolayer as NH3 and NO sensors: a DFT study. Appl Surf Sci. 2019;487:488–495. doi: 10.1016/j.apsusc.2019.05.040
  • Zhang R, Fu D, Ni J, et al. Adsorption for SO2 gas molecules on B, N, P and Al doped MoS2: the DFT study. Chem Phys Lett. 2019;715:273–277. doi: 10.1016/j.cplett.2018.11.054
  • Tang Y, Chen W, Li C, et al. Adsorption behavior of Co anchored on graphene sheets toward NO, SO2, NH3, CO and HCN molecules. Appl Surf Sci. 2015;342:191–199. doi: 10.1016/j.apsusc.2015.03.056
  • Chen D, Zhang X, Tang J, et al. Pristine and Cu decorated hexagonal InN monolayer, a promising candidate to detect and scavenge SF6 decompositions based on first-principle study. J. Hazard. Mater. 2019;363:346–357. doi: 10.1016/j.jhazmat.2018.10.006
  • Ma D, Zhang J, Li X, et al. C3n monolayers as promising candidates for NO2 sensors. SensActuat B Chem. 2018;266:664–673. doi: 10.1016/j.snb.2018.03.159
  • Ma D, Ju W, Li T, et al. Formaldehyde molecule adsorption on the doped monolayer MoS2: a first-principles study. Appl Surf Sci. 2016;371:180–188. doi: 10.1016/j.apsusc.2016.02.230

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.