286
Views
5
CrossRef citations to date
0
Altmetric
Articles

Free energy profiles of adsorption of surfactant micelles at metal-water interfaces

ORCID Icon & ORCID Icon
Pages 420-427 | Received 23 Mar 2020, Accepted 04 Jun 2020, Published online: 21 Jun 2020

REFERENCES

  • Malik MA, Hashim M, Nabi F, et al. Anti-corrosion ability of surfactants: a review. Int J Electrochem Sci. 2011;6(6):1927–1948.
  • Thomas JM, Thomas WJ. Principles and practice of heterogeneous catalysis. New York (NY): John Wiley & Sons; 2014.
  • Franklin TC, Mathew S. The use of surfactants in electrochemistry, in surfactants in solution. New York (NY): Springer; 1989; p. 267–286.
  • Johnson CJ, Dujardin E, Davis SA, et al. Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis. J Mater Chem. 2002;12(6):1765–1770. doi: 10.1039/b200953f
  • Manne S, Gaub HE. Molecular organization of surfactants at solid-liquid interfaces. Science. 1995;270(5241):1480–1482. doi: 10.1126/science.270.5241.1480
  • Manne S, Cleveland JP, Gaub HE, et al. Direct visualization of surfactant hemimicelles by force microscopy of the electrical double layer. Langmuir. 1994;10(12):4409–4413. doi: 10.1021/la00024a003
  • Jaschke M, Butt H-J, Gaub HE, et al. Surfactant aggregates at a metal surface. Langmuir. 1997;13(6):1381–1384. doi: 10.1021/la9607767
  • Xiong Y, Brown B, Kinsella B, et al. Atomic force microscopy study of the adsorption of surfactant corrosion inhibitor films. Corrosion. 2014;70(3):247–260. doi: 10.5006/0915
  • Hayes WA, Schwartz DK. Two-stage growth of octadecyltrimethylammonium bromide monolayers at mica from aqueous solution below the krafft point. Langmuir. 1998;14(20):5913–5917. doi: 10.1021/la980664a
  • Xu S, Cruchon-Dupeyrat SJN, Garno JC, et al. In situ studies of thiol self-assembly on gold from solution using atomic force microscopy. J Chem Phys. 1998;108(12):5002–5012. doi: 10.1063/1.475908
  • Xu S-L, Wang C, Zeng Q-D, et al. Self-assembly of cationic surfactants on a graphite surface studied by STM. Langmuir. 2002;18(3):657–660. doi: 10.1021/la0111506
  • Murphy CJ, Sau TK, Gole AM, et al. Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B. 2005;109(29):13857–13870. doi: 10.1021/jp0516846
  • Johnson RA, Nagarajan R. Modeling Self-assembly of surfactants at solid–liquid interfaces. II. hydrophilic surfaces. Colloid Surface A. 2000;167(1–2):21–30. doi: 10.1016/S0927-7757(99)00480-X
  • Sharma S, Singh H, Ko X. A quantitatively accurate theory to predict adsorbed configurations of linear surfactants on polar surfaces. J Phys Chem B. 2019;123(34):7464–7470. doi: 10.1021/acs.jpcb.9b05861
  • Ko X, Sharma S. Adsorption and self-assembly of surfactants on metal–water interfaces. J Phys Chem B. 2017;121(45):10364–10370. doi: 10.1021/acs.jpcb.7b09297
  • Caruso F, Serizawa T, Furlong DN, et al. Quartz crystal microbalance and surface plasmon resonance study of surfactant adsorption onto gold and chromium oxide surfaces. Langmuir. 1995;11(5):1546–1552. doi: 10.1021/la00005a023
  • Stålgren JJR, Eriksson JC, Boschkova K. A comparative study of surfactant adsorption on model surfaces using the quartz crystal microbalance and the ellipsometer. J Colloid Interf Sci. 2002;253(1):190–195. doi: 10.1006/jcis.2002.8482
  • Khan MR, Premadasa UI, Cimatu KLA. Role of the cationic headgroup to conformational changes undergone by shorter alkyl chain surfactant and water molecules at the air-liquid interface. J Colloid Interf Sci. 2020;568:221–233. doi: 10.1016/j.jcis.2020.02.056
  • Vembanur S, Patel AJ, Sarupria S, et al. On the thermodynamics and kinetics of hydrophobic interactions at interfaces. J Phys Chem B. 2013;117(35):10261–10270. doi: 10.1021/jp4050513
  • Knag M, Sjöblom J, Øye G, et al. A quartz crystal microbalance study of the adsorption of quaternary ammonium derivates on iron and cementite. Colloid Surface A. 2004;250(1–3):269–278. doi: 10.1016/j.colsurfa.2004.03.038
  • Huang L, Maltesh C, Somasundaran P. Adsorption behavior of cationic and nonionic surfactant mixtures at the alumina–water interface. J Colloid Interf Sci. 1996;177(1):222–228. doi: 10.1006/jcis.1996.0024
  • Somasundaran P, Snell ED, Fu E, et al. Effect of adsorption of non-ionic surfactant and non-ionic—anionic surfactant mixtures on silica—liquid interfacial properties. Colloid Surface. 1992;63(1–2):49–54. doi: 10.1016/0166-6622(92)80068-D
  • Paria S, Khilar KC. A review on experimental studies of surfactant adsorption at the hydrophilic solid–water interface. Adv Colloid Interfac. 2004;110(3):75–95. doi: 10.1016/j.cis.2004.03.001
  • Singh A, Ansari KR, Xu X, et al. An impending inhibitor useful for the oil and gas production industry: weight loss, electrochemical, surface and quantum chemical calculation. Sci Rep-UK. 2017;7(1):1–17. doi: 10.1038/s41598-016-0028-x
  • Cruz J, Martı´nez R, Genesca J, et al. Experimental and theoretical study of 1-(2-ethylamino)-2-methylimidazoline as an inhibitor of carbon steel corrosion in acid media. J Electroanal Chem. 2004;566(1):111–121. doi: 10.1016/j.jelechem.2003.11.018
  • Hegazy MA, Abdallah M, Awad MK, et al. Three novel di-quaternary ammonium salts as corrosion inhibitors for API X65 steel pipeline in acidic solution. Part I: experimental results. Corros Sci. 2014;81:54–64. doi: 10.1016/j.corsci.2013.12.010
  • Kurapati Y, Sharma S. Adsorption free energies of imidazolinium-type surfactants in infinite dilution and in micellar state on gold surface. J Phys Chem B. 2018;122(22):5933–5939. doi: 10.1021/acs.jpcb.8b02358
  • Singh H, Sharma S. Disintegration of surfactant micelles at metal-water interfaces promotes their strong adsorption. J Phys Chem B. 2020;124:2262–2267. doi: 10.1021/acs.jpcb.9b10780
  • Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian∼ 09 revision D. 01. 2014.
  • Wang J, Wolf RM, Caldwell JW, et al. Development and testing of a general amber force field. J Comput Chem. 2004;25(9):1157–1174. doi: 10.1002/jcc.20035
  • Sprenger KG, Jaeger VW, Pfaendtner J. The general AMBER force field (GAFF) can accurately predict thermodynamic and transport properties of many ionic liquids. J Phys Chem B. 2015;119(18):5882–5895. doi: 10.1021/acs.jpcb.5b00689
  • Babiaczyk WI, Bonella S, Guidoni L, et al. Hydration structure of the quaternary ammonium cations. J Phys Chem B. 2010;114(46):15018–15028. doi: 10.1021/jp106282w
  • Heinz H, Vaia RA, Farmer BL, et al. Accurate simulation of surfaces and interfaces of face-centered cubic metals using 12− 6 and 9− 6 Lennard-Jones potentials. J Phys Chem C. 2008;112(44):17281–17290. doi: 10.1021/jp801931d
  • Joung IS, Cheatham III TE. Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J Phys Chem B. 2008;112(30):9020–9041. doi: 10.1021/jp8001614
  • Berendsen HJC, Grigera JR, Straatsma TP. The missing term in effective pair potentials. J Phys Chem. 1987;91(24):6269–6271. doi: 10.1021/j100308a038
  • Patel AJ, Varilly P, Chandler D. Fluctuations of water near extended hydrophobic and hydrophilic surfaces. J Phys Chem B. 2010;114(4):1632–1637. doi: 10.1021/jp909048f
  • Plimpton S. Fast parallel algorithms for short-range molecular dynamics. Albuquerque (NM, USA): Sandia National Labs; 1993.
  • Singh H, Kurapati Y, Sharma S. Aggregation and adsorption behavior of organic corrosion inhibitors studied using molecular simulations. NACE Corrosion Conference; 2019.
  • Sharma S, Ko X, Kurapati Y, et al. Adsorption behavior of organic corrosion inhibitors on metal surfaces—some new insights from molecular simulations. Corrosion. 2019;75(1):90–105. doi: 10.5006/2976
  • Chen M, Burgess I, Lipkowski J. Potential controlled surface aggregation of surfactants at electrode surfaces–a molecular view. Surf Sci. 2009;603(10–12):1878–1891. doi: 10.1016/j.susc.2008.09.048

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.