772
Views
6
CrossRef citations to date
0
Altmetric
Articles

A review of recent advances in computational and experimental analysis of first adsorbed water layer on solid substrate

&
Pages 925-941 | Received 06 Apr 2020, Accepted 12 Jun 2020, Published online: 30 Jun 2020

References

  • Bjornehohn E, Hansen MH, Hodgson A, et al. Water at interfaces. Chem Rev. 2016;116:7698–7726.
  • Mu RT, Zhao ZJ, Dohnalek Z, et al. Structural motifs of water on metal oxide surfaces. Chem Soc Rev. 2017;46:1785–1806.
  • Hodgson A, Haq S. Water adsorption and the wetting of metal surfaces. Surf Sci Rep. 2009;64:381–451.
  • Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972;238:37–38.
  • Maier S, Salmeron M. How does water wet a surface? Acc Chem Res. 2015;48:2783–2790.
  • Shimizu TK, Maier S, Verdaguer A, et al. Water at surfaces and interfaces: from molecules to ice and bulk liquid. Prog Surf Sci. 2018;93:87–107.
  • Carrasco J, Hodgson A, Michaelides A. A molecular perspective of water at metal interfaces. Nat Mater. 2012;11:667–674.
  • Sun CH, Liu LM, Selloni A, et al. Titania-water interactions: a review of theoretical studies. J Mater Chem. 2010;20:10319–10334.
  • Rimola A, Costa D, Sodupe M, et al. Silica surface features and their role in the adsorption of biomolecules: computational modeling and experiments. Chem Rev. 2013;113:4216–4313.
  • Lanzani G, Martinazzo R, Materzanini G, et al. Chemistry at surfaces: from ab initio structures to quantum dynamics. Theor Chem Acc. 2007;117:805–825.
  • Tatarkhanov M, Fomin E, Salmeron M, et al. The structure of mixed H2O-OH monolayer films on Ru(0001). J Chem Phys. 2008;129:154109.
  • Maier S, Lechner BAJ, Somorjai GA, et al. Growth and structure of the first layers of ice on Ru(0001) and Pt(111). J Am Chem Soc. 2016;138:3145–3151.
  • Morgenstern M, Muller J, Michely T, et al. The ice bilayer on Pt(111): nucleation, structure and melting. Z Phys Chem. 1997;198:43–72.
  • Nie S, Feibelman PJ, Bartelt NC, et al. Pentagons and heptagons in the first water layer on Pt(111). Phys Rev Lett. 2010;105:026102.
  • Feibelman PJ, Bartelt NC, Nie S, et al. Interpretation of high-resolution images of the best-bound wetting layers on Pt(111). J Chem Phys. 2010;133:154703.
  • Standop S, Redinger A, Morgenstern M, et al. Molecular structure of the H2O wetting layer on Pt(111). Phys Rev B. 2010;82:161412.
  • Standop S, Morgenstern M, Michely T, et al. H2o on Pt(111): structure and stability of the first wetting layer. J Phys: Condens Matter. 2012;24:124103.
  • Lin CF, Corem G, Godsi O, et al. Ice nucleation on a corrugated surface. J Am Chem Soc. 2018;140:15804–15811.
  • Lin C, Avidor N, Corem G, et al. Two-dimensional wetting of a stepped copper surface. Phys Rev Lett. 2018;120:076101.
  • Kolb MJ, Farber RG, Derouin J, et al. Double-stranded water on stepped platinum surfaces. Phys Rev Lett. 2016;116:136101.
  • Peng JB, Guo J, Hapala P, et al. Weakly perturbative imaging of interfacial water with submolecular resolution by atomic force microscopy. Nat Commun. 2018;9:122.
  • Shiotari A, Sugimoto Y. Ultrahigh-resolution imaging of water networks by atomic force microscopy. Nat Commun. 2017;8:14313.
  • Weissenrieder J, Mikkelsen A, Andersen JN, et al. Experimental evidence for a partially dissociated water bilayer on Ru{0001}. Phys Rev Lett. 2004;93:196102.
  • Ogasawara H, Brena B, Nordlund D, et al. Structure and bonding of water on Pt(111). Phys Rev Lett. 2002;89:276102.
  • Schaefer A, Lanzilotto V, Cappel U, et al. First layer water phases on anatase TiO2(101). Surf Sci. 2018;674:25–31.
  • Kim Y, Shin S, Moon ES, et al. Spectroscopic monitoring of the acidity of water films on Ru(0001): orientation-specific acidity of adsorbed water. Chem-Eur J. 2014;20:3376–3383.
  • Su XC, Lianos L, Shen YR, et al. Surface-induced ferroelectric ice on Pt(111). Phys Rev Lett. 1998;80:1533–1536.
  • Thiel PA, Hoffmann FM, Weinberg WH. Monolayer and multilayer adsorption of water on Ru(001). J Chem Phys. 1981;75:5556–5572.
  • Held G, Menzel D. The structure of the bilayer of D2O on Ru(001). Surf Sci. 1994;316:92–102.
  • Feibelman PJ. Partial dissociation of water on Ru(0001). Science. 2002;295:99–102.
  • Firment LE, Somorjai GA. Surface-structures of vapor-grown ice and naphthalene crystals studied by low-energy electron-diffraction. Surf Sci. 1976;55:413–426.
  • Haq S, Harnett J, Hodgson A. Growth of thin crystalline ice films on Pt(111). Surf Sci. 2002;505:171–182.
  • Harnett J, Haq S, Hodgson A. Electron induced restructuring of crystalline ice adsorbed on Pt(111). Surf Sci. 2003;528:15–19.
  • Heidberg J, Redlich B, Wetter D. Adsorption of water-vapor on the MgO(100) single-crystal surface. Ber Bunsen Phys Chem. 1995;99:1333–1337.
  • Ferry D, Glebov A, Senz V, et al. Observation of the second ordered phase of water on the MgO(100) surface: Low energy electron diffraction and helium atom scattering studies. J Chem Phys. 1996;105:1697–1701.
  • Glebov A, Graham AP, Menzel A, et al. Orientational ordering of two-dimensional ice on Pt(111). J Chem Phys. 1997;106:9382–9385.
  • Gawronski H, Carrasco J, Michaelides A, et al. Manipulation and control of hydrogen bond dynamics in absorbed ice nanoclusters. Phys Rev Lett. 2008;101:136102.
  • Mehlhorn M, Gawronski H, Morgenstern K. Electron damage to supported ice investigated by scanning tunneling microscopy and spectroscopy. Phys Rev Lett. 2008;101:196101.
  • Cavalleri M, Ogasawara H, Pettersson LGM, et al. The interpretation of x-ray absorption spectra of water and ice. Chem Phys Lett. 2002;364:363–370.
  • Ma RZ, Cao DY, Zhu CQ, et al. Atomic imaging of the edge structure and growth of a two-dimensional hexagonal ice. Nature. 2020;577:60–63.
  • Gillan MJ, Alfe D, Michaelides A. Perspective: How good is DFT for water? J Chem Phys. 2016;144:130901.
  • Hamann DR. H2o hydrogen bonding in density-functional theory. Phys Rev B. 1997;55:10157–10160.
  • Hamada I, Lee K, Morikawa Y. Interaction of water with a metal surface: importance of van der waals forces. Phys Rev B. 2010;81:115452.
  • Carrasco J, Klimes J, Michaelides A. The role of van der waals forces in water adsorption on metals. J Chem Phys. 2013;138:024708.
  • Carrasco J, Santra B, Klimes J, et al. To wet or not to wet? Dispersion forces tip the balance for water ice on metals. Phys Rev Lett. 2011;106:026101.
  • Tonigold K, Gross A. Dispersive interactions in water bilayers at metallic surfaces: A comparison of the PBE and rPBE functional including semiempirical dispersion corrections. J Comput Chem. 2012;33:695–701.
  • Zhou G, Liu C, Bumm LA, et al. Force field parameter development for the thiolate/defective au (111) interface. Langmuir. 2020;15:4098–4107.
  • Senftle TP, Hong S, Islam MM, et al. The reaxff reactive force-field: development, applications and future directions. NPJ Comput Mater. 2016;2:15011.
  • Huang LL, Gubbins KE, Li LC, et al. Water on titanium dioxide surface: A revisiting by reactive molecular dynamics simulations. Langmuir. 2014;30:14832–14840.
  • Kim SY, Kumar N, Persson P, et al. Development of a reaxff reactive force field for titanium dioxide/water systems. Langmuir. 2013;29:7838–7846.
  • Raymand D, van Duin ACT, Spangberg D, et al. Water adsorption on stepped zno surfaces from md simulation. Surf Sci. 2010;604:741–752.
  • Fogarty JC, Aktulga HM, Grama AY, et al. A reactive molecular dynamics simulation of the silica-water interface. J Chem Phys. 2010;132:174704.
  • Wen JL, Ma TB, Zhang WW, et al. Surface orientation and temperature effects on the interaction of silicon with water: molecular dynamics simulations using reaxff reactive force field. J Phys Chem A. 2017;121:587–594.
  • Ai LQ, Zhou YS, Huang HS, et al. A reactive force field molecular dynamics simulation of nickel oxidation in supercritical water. J Supercrit Fluids. 2018;133:421–428.
  • van Duin ACT, Bryantsev VS, Diallo MS, et al. Development and validation of a reaxff reactive force field for cu cation/water interactions and copper metal/metal oxide/metal hydroxide condensed phases. J Phys Chem A. 2010;114:9507–9514.
  • Kim SY, van Duin ACT. Simulation of titanium metal/titanium dioxide etching with chlorine and hydrogen chloride gases using the reaxff reactive force field. J Phys Chem A. 2013;117:5655–5663.
  • Berg A, Peter C, Johnston K. Evaluation and optimization of interface force fields for water on gold surfaces. J Chem Theory Comput. 2017;13:5610–5623.
  • Bandura AV, Sykes DG, Kubicki JD. Derivation of force field parameters for TiO2-H2O systems from ab initio calculations. J Phys Chem B. 2003;107:11072–11081.
  • Clabaut P, Fleurat-Lessard P, Michel C, et al. Ten facets, one force field: The gal19 force field for water–noble metal interfaces. J Chem Theory Comput. 2020. doi: 10.1021/acs.jctc.1020c00091
  • Zhu CQ, Gao YR, Zhu WD, et al. Direct observation of 2-dimensional ices on different surfaces near room temperature without confinement. Proc Natl Acad Sci USA. 2019;116:16723–16728.
  • Luan BQ, Huynh T, Zhou RH. Simplified TiO2 force fields for studies of its interaction with biomolecules. J Chem Phys. 2015;142:234102.
  • Vega C, Abascal JLF. Simulating water with rigid non-polarizable models: A general perspective. Phys Chem Chem Phys. 2011;13:19663–19688.
  • Abascal JLF, Vega C. A general purpose model for the condensed phases of water: TIP4P/2005. J Chem Phys. 2005;123:234505.
  • Abascal JLF, Sanz E, Fernandez RG, et al. A potential model for the study of ices and amorphous water: TIP4P/Ice. J Chem Phys. 2005;122:234511.
  • McBride F, Hodgson A. Water and its partially dissociated fragments at metal surfaces. Int Rev Phys Chem. 2017;36:1–38.
  • Thiel PA, Madey TE. The interaction of water with solid surfaces: fundamental aspects. Surf Sci Rep. 1987;7:211–385.
  • Forster M, Raval R, Hodgson A, et al. C(2(2) water-hydroxyl layer on Cu(110): A wetting layer stabilized by bjerrum defects. Phys Rev Lett. 2011;106:046103.
  • Michaelides A, Alavi A, King DA. Different surface chemistries of water on Ru{0001}: from monomer adsorption to partially dissociated bilayers. J Am Chem Soc. 2003;125:2746–2755.
  • Messaoudi S, Dhouib A, Abderrabba M, et al. Wetting of intact and partially dissociated water layer on Ru(0001): A density functional study. J Phys Chem C. 2011;115:5834–5840.
  • Tatarkhanov M, Ogletree DF, Rose F, et al. Metal- and hydrogen-bonding competition during water adsorption on Pd(111) and Ru(0001). J Am Chem Soc. 2009;131:18425–18434.
  • Hamada I, Meng S. Water wetting on representative metal surfaces: improved description from van der waals density functionals. Chem Phys Lett. 2012;521:161–166.
  • Meng S, Xu LF, Wang EG, et al. Vibrational recognition of hydrogen-bonded water networks on a metal surface. Phys Rev Lett. 2002;89:176104.
  • Meng S, Wang EG, Gao SW. Water adsorption on metal surfaces: A general picture from density functional theory studies. Phys Rev B. 2004;69:195404.
  • Michaelides A, Ranea VA, de Andres PL, et al. General model for water monomer adsorption on close-packed transition and noble metal surfaces. Phys Rev Lett. 2003;90:216102.
  • Meng S. Dynamical properties and the proton transfer mechanism in the wetting water layer on Pt(111). Surf Sci. 2005;575:300–306.
  • Bu YF, Cui TT, Zhao M, et al. Evolution of water structures on stepped platinum surfaces. J Phys Chem C. 2018;122:604–611.
  • Pekoz R, Donadio D. Dissociative adsorption of water at (211) stepped metallic surfaces by first-principles simulations. J Phys Chem C. 2017;121:16783–16791.
  • Donadio D, Ghiringhelli LM, Delle Site L. Autocatalytic and cooperatively stabilized dissociation of water on a stepped platinum surface. J Am Chem Soc. 2012;134:19217–19222.
  • Kolb MJ, Wermink J, Calle-Vallejo F, et al. Initial stages of water solvation of stepped platinum surfaces. Phys Chem Chem Phys. 2016;18:3416–3422.
  • Lin XH, Gross A. First-principles study of the water structure on flat and stepped gold surfaces. Surf Sci. 2012;606:886–891.
  • Nakamura M, Sato N, Hoshi N, et al. One-dimensional zigzag chain of water formed on a stepped surface. J Phys Chem C. 2009;113:4538–4542.
  • Endo O, Nakamura M, Sumii R, et al. 1d hydrogen bond chain on Pt(211) stepped surface observed by o k-nexafs spectroscopy. J Phys Chem C. 2012;116:13980–13984.
  • Pekoz R, Worner S, Ghiringhelli LM, et al. Trends in the adsorption and dissociation of water clusters on flat and stepped metallic surfaces. J Phys Chem C. 2014;118:29990–29998.
  • Sterrer M, Nilius N, Shaikhutdinov S, et al. Interaction of water with oxide thin film model systems. J Mater Res. 2019;34:360–378.
  • Yang JJ, Wang EG. Reaction of water on silica surfaces. Curr Opin Solid St M. 2006;10:33–39.
  • Bai J, Zhou BX. Titanium dioxide nanomaterials for sensor applications. Chem Rev. 2014;114:10131–10176.
  • Kapilashrami M, Zhang YF, Liu YS, et al. Probing the optical property and electronic structure of tio2 nanomaterials for renewable energy applications. Chem Rev. 2014;114:9662–9707.
  • Rajh T, Dimitrijevic NM, Bissonnette M, et al. Titanium dioxide in the service of the biomedical revolution. Chem Rev. 2014;114:10177–10216.
  • Raju M, Kim SY, van Duin ACT, et al. Reaxff reactive force field study of the dissociation of water on titania surfaces. J Phys Chem C. 2013;117:10558–10572.
  • Kowalski PM, Meyer B, Marx D. Composition, structure, and stability of the rutile TiO2(110) surface: oxygen depletion, hydroxylation, hydrogen migration, and water adsorption. Phys Rev B. 2009;79:115410.
  • Suda Y, Morimoto T. Molecularly adsorbed H2O on the bare surface of TiO2 (rutile). Langmuir. 1987;3:786–788.
  • Diebold U. The surface science of titanium dioxide. Surf Sci Rep. 2003;48:53–229.
  • Barnard AS, Zapol P, Curtiss LA. Modeling the morphology and phase stability of TiO2 nanocrystals in water. J Chem Theory Comput. 2005;1:107–116.
  • Beck TJ, Klust A, Batzill M, et al. Surface structure of TiO2(011)-(2(1). Phys Rev Lett. 2004;93:036104.
  • Di Valentin C, Tilocca A, Selloni A, et al. Adsorption of water on reconstructed rutile TiO2(011)-(2(1): Ti=O double bonds and surface reactivity. J Am Chem Soc. 2005;127:9895–9903.
  • Vittadini A, Selloni A, Rotzinger FP, et al. Structure and energetics of water adsorbed at TiO2 anatase (101) and (001) surfaces. Phys Rev Lett. 1998;81:2954–2957.
  • Selloni A, Vittadini A, Gratzel M. The adsorption of small molecules on the tio2 anatase(101) surface by first-principles molecular dynamics. Surf Sci. 1998;402:219–222.
  • Patrick CE, Giustino F. Structure of a water monolayer on the anatase TiO2(101) surface. Phys Rev Appl. 2014;2:014001.
  • Martinez-Casado R, Mallia G, Harrison NM, et al. First-principles study of the water adsorption on anatase(101) as a function of the coverage. J Phys Chem C. 2018;122:20736–20744.
  • Zhou GB, Liu C, Huang LL. Molecular dynamics simulation of first-adsorbed water layer at titanium dioxide surfaces. J Chem Eng Data. 2018;63:2420–2429.
  • Limo MJ, Sola-Rabada A, Boix E, et al. Interactions between metal oxides and biomolecules: from fundamental understanding to applications. Chem Rev. 2018;118:11118–11193.
  • Yang JJ, Wang EG. Water adsorption on hydroxylated alpha-quartz (0001) surfaces: from monomer to flat bilayer. Phys Rev B. 2006;73:035406.
  • Bampoulis P, Sotthewes K, Dollekamp E, et al. Water confined in two-dimensions: Fundamentals and applications. Surf Sci Rep. 2018;73:233–264.
  • Chen YW, Chu IH, Wang Y, et al. Water thin film-silica interaction on alpha-quartz (0001) surfaces. Phys Rev B. 2011;84:155444.
  • Pan D, Liu LM, Tribello GA, et al. Surface energy and surface proton order of ice ih. Phys Rev Lett. 2008;101:155703.
  • Oncak M, Wlodarczyk R, Sauer J. Hydration structures of MgO, CaO, and SrO (001) surfaces. J Phys Chem C. 2016;120:24762–24769.
  • Fujimori Y, Zhao XH, Shao X, et al. Interaction of water with the CaO(001) surface. J Phys Chem C. 2016;120:5565–5576.
  • Foster M, D'Agostino M, Passno D. Water on MgO(100)-An infrared study at ambient temperatures. Surf Sci. 2005;590:31–41.
  • Wlodarczyk R, Sierka M, Kwapien K, et al. Structures of the ordered water monolayer on MgO(001). J Phys Chem C. 2011;115:6764–6774.
  • Carrasco E, Aumer A, Gomes JF, et al. Vibrational spectroscopic observation of ice dewetting on MgO(001). Chem Commun. 2013;49:4355–4357.
  • Demirdjian B, Suzanne J, Ferry D, et al. Neutron diffraction investigation of water on MgO(001) surfaces, from monolayer to bulk condensation. Surf Sci. 2000;462:L581–L586.
  • Yu YH, Guo QL, Liu S, et al. Partial dissociation of water on a MgO(100) film. Phys Rev B. 2003;68:115414.
  • Giordano L, Goniakowski J, Suzanne J. Partial dissociation of water molecules in the (3(2) water monolayer deposited on the MgO(100) surface. Phys Rev Lett. 1998;81:1271–1273.
  • Cho JH, Park JM, Kim KS. Influence of intermolecular hydrogen bonding on water dissociation at the MgO(001) surface. Phys Rev B. 2000;62:9981–9984.
  • Rafiee J, Mi X, Gullapalli H, et al. Wetting transparency of graphene. Nat Mater. 2012;11:217–222.
  • Andrews JE, Sinha S, Chung PW, et al. Wetting dynamics of a water nanodrop on graphene. Phys Chem Chem Phys. 2016;18:23482–23493.
  • Ashraf A, Wu YB, Wang MC, et al. Doping-induced tunable wettability and adhesion of graphene. Nano Lett. 2016;16:4708–4712.
  • Yao X, Song YL, Jiang L. Applications of bio-inspired special wettable surfaces. Adv Mater. 2011;23:719–734.
  • Zhang SN, Huang JY, Chen Z, et al. Bioinspired special wettability surfaces: from fundamental research to water harvesting applications. Small. 2017;13:1602992.
  • Wang ZX, Elimelech M, Lin SH. Environmental applications of interfacial materials with special wettability. Environ Sci Technol. 2016;50:2132–2150.
  • Liu KS, Jiang L. Metallic surfaces with special wettability. Nanoscale. 2011;3:825–838.
  • Zhu Z, Guo HK, Jiang XK, et al. Reversible hydrophobicity-hydrophilicity transition modulated by surface curvature. J Phys Chem Lett. 2018;9:2346–2352.
  • Zhu CQ, Li H, Huang YF, et al. Microscopic insight into surface wetting: Relations between interfacial water structure and the underlying lattice constant. Phys Rev Lett. 2013;110:126101.
  • Xu Z, Gao Y, Wang CL, et al. Nanoscale hydrophilicity on metal surfaces at room temperature: Coupling lattice constants and crystal faces. J Phys Chem C. 2015;119:20409–20415.
  • van der Niet MJTC, den Dunnen A, Koper MTM, et al. Tuning hydrophobicity of platinum by small changes in surface morphology. Phys Rev Lett. 2011;107:146103.
  • Zhou G, Schoen BH, Yang Z, et al. First adsorbed water layer and its wettability transition under compressive lattice strain. J Phys Chem C. 2020;124:4057–4064.
  • Zhang W, Ye C, Hong LB, et al. Molecular structure and dynamics of water on pristine and strained phosphorene: wetting and diffusion at nanoscale. Sci Rep. 2016;6:38327.
  • Chialvo AA, Vlcek L, Cummings PT. Surface strain effects on the water-graphene interfacial and confinement behavior. J Phys Chem C. 2014;118:19701–19711.
  • Wang CL, Lu HJ, Wang ZG, et al. Stable liquid water droplet on a water monolayer formed at room temperature on ionic model substrates. Phys Rev Lett. 2009;103:137801.
  • James M, Darwish TA, Ciampi S, et al. Nanoscale condensation of water on self-assembled monolayers. Soft Matter. 2011;7:5309–5318.
  • Limmer DT, Willard AP, Madden P, et al. Hydration of metal surfaces can be dynamically heterogeneous and hydrophobic. Proc Natl Acad Sci USA. 2013;110:4200–4205.
  • Fitzner M, Sosso GC, Cox SJ, et al. The many faces of heterogeneous ice nucleation: Interplay between surface morphology and hydrophobicity. J Am Chem Soc. 2015;137:13658–13669.
  • Gerrard N, Gattinoni C, McBride F, et al. Strain relief during ice growth on a hexagonal template. J Am Chem Soc. 2019;141:8599–8607.
  • Yu XM, Qi CH, Wang CL. Enhancement of water self-diffusion at super-hydrophilic surface with ordered water. Chinese Phys B. 2018;27:060101.
  • Wang CL, Wen BH, Tu YS, et al. Friction reduction at a superhydrophilic surface: role of ordered water. J Phys Chem C. 2015;119:11679–11684.
  • Ho TA, Papavassiliou DV, Lee LL, et al. Liquid water can slip on a hydrophilic surface. Proc Natl Acad Sci USA. 2011;108:16170–16175.
  • Phan A, Ho TA, Cole DR, et al. Molecular structure and dynamics in thin water films at metal oxide surfaces: Magnesium, aluminum, and silicon oxide surfaces. J Phys Chem C. 2012;116:15962–15973.
  • Rotenberg B, Patel AJ, Chandler D. Molecular explanation for why talc surfaces can be both hydrophilic and hydrophobic. J Am Chem Soc. 2011;133:20521–20527.
  • Shao Q, Jiang SY. Molecular understanding and design of zwitterionic materials. Adv Mater. 2015;27:15–26.
  • Buruga K, Song H, Shang J, et al. A review on functional polymer-clay based nanocomposite membranes for treatment of water. J Hazard Mater. 2019;379:120584.
  • Melios C, Giusca CE, Panchal V, et al. Water on graphene: review of recent progress. 2D Mater. 2018;5:022001.
  • Wei Y, Zhang YS, Gao XL, et al. Multilayered graphene oxide membranes for water treatment: A review. Carbon N Y. 2018;139:964–981.
  • Cui G, Bi ZX, Zhang RY, et al. A comprehensive review on graphene-based anti-corrosive coatings. Chem Eng J. 2019;373:104–121.
  • Peng JB, Guo J, Jiang Y. Probing surface water at submolecular level with scanning probe microscopy. Sci Sin Chim. 2019;49:536–555.
  • McKenzie RH, Bekker C, Athokpam B, et al. Effect of quantum nuclear motion on hydrogen bonding. J Chem Phys. 2014;140:174508.
  • Ceriotti M, Cuny J, Parrinello M, et al. Nuclear quantum effects and hydrogen bond fluctuations in water. Proc Natl Acad Sci USA. 2013;110:15591–15596.
  • Li XZ, Walker B, Michaelides A. Quantum nature of the hydrogen bond. Proc Natl Acad Sci USA. 2011;108:6369–6373.
  • Nagata Y, Pool RE, Backus EHG, et al. Nuclear quantum effects affect bond orientation of water at the water-vapor interface. Phys Rev Lett. 2012;109:226101.
  • Morrone JA, Car R. Nuclear quantum effects in water. Phys Rev Lett. 2008;101:017801.
  • Yang Z, Li YZ, Zhou GB, et al. Molecular dynamics simulations of hydrogen bond dynamics and far-infrared spectra of hydration water molecules around the mixed monolayer-protected au nanoparticle. J Phys Chem C. 2015;119:1768–1781.
  • Li YZ, Yang Z, Hu N, et al. Insights into hydrogen bond dynamics at the interface of the charged monolayer-protected au nanoparticle from molecular dynamics simulation. J Chem Phys. 2013;138:184703.
  • Zhou GB, Yang Z, Fu FJ, et al. Molecular-level understanding of solvation structures and vibrational spectra of an ethylammonium nitrate ionic liquid around single-walled carbon nanotubes. Ind Eng Chem Res. 2015;54:8166–8174.
  • Zhou GB, Li YZ, Yang Z, et al. Structural properties and vibrational spectra of ethylammonium nitrate ionic liquid confined in single-walled carbon nanotubes. J Phys Chem C. 2016;120:5033–5041.
  • Behler J. First principles neural network potentials for reactive simulations of large molecular and condensed systems. Angew Chem Int Edit. 2017;56:12828–12840.
  • Quaranta V, Behler J, Hellstrom M. Structure and dynamics of the liquid-water/zinc-oxide interface from machine learning potential simulations. J Phys Chem C. 2019;123:1293–1304.
  • Behler J, Martonak R, Donadio D, et al. Metadynamics simulations of the high-pressure phases of silicon employing a high-dimensional neural network potential. Phys Rev Lett. 2008;100:185501.
  • Boes JR, Kitchin JR. Modeling segregation on AuPd(111) surfaces with density functional theory and monte carlo simulations. J Phys Chem C. 2017;121:3479–3487.
  • Artrith N, Kolpak AM. Grand canonical molecular dynamics simulations of Cu-Au nanoalloys in thermal equilibrium using reactive ann potentials. Comp Mater Sci. 2015;110:20–28.
  • Hellstrom M, Behler J. Structure of aqueous naoh solutions: insights from neural-network-based molecular dynamics simulations. Phys Chem Chem Phys. 2017;19:82–96.
  • Morawietz T, Singraber A, Dellago C, et al. How van der waals interactions determine the unique properties of water. Proc Natl Acad Sci USA. 2016;113:8368–8373.
  • Natarajan SK, Behler J. Neural network molecular dynamics simulations of solid-liquid interfaces: water at low-index copper surfaces. Phys Chem Chem Phys. 2016;18:28704–28725.
  • Quaranta V, Hellstrom M, Behler J. Proton-transfer mechanisms at the water-ZnO interface: The role of presolvation. J Phys Chem Lett. 2017;8:1476–1483.
  • Quaranta V, Hellstrom M, Behler J, et al. Maximally resolved anharmonic oh vibrational spectrum of the water/ZnO(1010) interface from a high-dimensional neural network potential. J Chem Phys. 2018;148:241720.
  • Behler J. Perspective: machine learning potentials for atomistic simulations. J Chem Phys. 2016;145:170901.
  • Schmidt J, Marques MRG, Botti S, et al. Recent advances and applications of machine learning in solid-state materials science. NPJ Comput Mater. 2019;5:83.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.