416
Views
7
CrossRef citations to date
0
Altmetric
Articles

Molecular dynamics simulation on structure evolution of silica glass in nano-cutting at high temperature

ORCID Icon, , , &
Pages 957-965 | Received 04 May 2020, Accepted 25 Jun 2020, Published online: 28 Jul 2020

References

  • Raman RN, Elhadj S, Negres RA, et al. Characterization of ejected fused silica particles following surface breakdown with nanosecond pulses. Opt Express. 2012;20:27708–27724.
  • Gamaly EG, Juodkazis S, Nishimura K, et al. Laser-matter interaction in the bulk of a transparent solid: confined microexplosion and void formation. Phys Rev B. 2006;73:214101.
  • Evans CJ, Paul E, Dornfeld D, et al. Material removal mechanisms in lapping and polishing. CIRP Annals. 2003;52:611–633.
  • Wang W, Yao P, Wang J, et al. Crack-free ductile mode grinding of fused silica under controllable dry grinding conditions. Int J Mach Tools Manuf. 2016;109:126–136.
  • Fang FZ, Wu H, Liu YC. Modelling and experimental investigation on nanometric cutting of monocrystalline silicon. Int J Mach Tools Manuf. 2005;45:1681–1686.
  • Fang FZ, Wu H, Zhou W, et al. A study on mechanism of nano-cutting single crystal silicon. J Mater Process Technol. 2007;184:407–410.
  • Yan J, Asami T, Harada H, et al. Crystallographic effect on subsurface damage formation in silicon microcutting. CIRP Annals. 2012;61:131–134.
  • Goel S, Luo X, Comley P, et al. Brittle–ductile transition during diamond turning of single crystal silicon carbide. Int J Mach Tools Manuf. 2013;65:15–21.
  • Cheng K., Huo D. H. Micro-cutting: fundamentals and applications. West sussex: Wiley; 2013.
  • Song H, Dan J, Chen X, et al. Experimental investigation of machinability in laser-assisted machining of fused silica. Int J Adv Manuf Technol. 2018;97:267–278.
  • Zhou C, Zhang Q, He C, et al. Function of liquid and tool wear in ultrasonic bound-abrasive polishing of fused silica with different polishing tools. Optik (Stuttg). 2014;125:4064–4068.
  • Song H, Dan J, Li J, et al. Experimental study on the cutting force during laser-assisted machining of fused silica based on the Taguchi method and response surface methodology. J Manuf Process. 2019;38:9–20.
  • Song H, Li J, Dan J, et al. Experimental analysis and evaluation of the cutting performance of tools in laser-assisted machining of fused silica. Precis Eng. 2019;56:191–202.
  • Ravindra D, Ghantasala MK, Patten J. Ductile mode material removal and high-pressure phase transformation in silicon during micro-laser assisted machining. Precis Eng. 2012;36:364–367.
  • Zheng K, Wang C, Cheng YQ, et al. Electron-beam-assisted superplastic shaping of nanoscale amorphous silica. Nat Commun. 2010;1:24.
  • Ochoa R, Simmons JH. High strain rate effects on the structure of a simulated silica glass. J Non Cryst Solids. 1985;75:413–418.
  • Silva EC, Tong L, Yip S, et al. Size effects on the stiffness of silica nanowires. Small. 2006;2:239–243.
  • Brambilla G, Payne DN. The ultimate strength of glass silica nanowires[J]. Nano Letters. 2009;9(2):831–835.
  • Dávila LP, Leppert VJ, Bringa EM. The mechanical behavior and nanostructure of silica nanowires via simulations. Scr Mater. 2009;60:843–846.
  • Rountree CL, Vandembroucq D, Talamali M, et al. Plasticity-induced structural anisotropy of silica glass. Phys Rev Lett. 2009;102:195501.
  • Lacroix R, Kermouche G, Teisseire J, et al. Plastic deformation and residual stresses in amorphous silica pillars under uniaxial loading. Acta Mater. 2012;60:5555–5566.
  • Pedone A, Malavasi G, Menziani MC, et al. Molecular dynamics studies of stress−strain behavior of silica glass under a tensile load. Chem Mater. 2008;20:4356–4366.
  • Takada A. Molecular dynamics simulation of deformation in SiO2 and Na2O-SiO2 glasses. J Ceram Soc Jpn. 2008;116:880–884.
  • Taniguchi T, Ito S. Deformation and fracture of soda-lime-silica glass under tension by molecular dynamics simulation. J Ceram Soci Jpn. 2008;116:885–889.
  • Lahkar S, Ghosal S, Singh G. Atomistic simulation of mixed mode fracture in vitreous silica. Proceedings of the ASME 2017 international mechanical engineering congress and exposition, Tampa, FL, USA, 2017.
  • Priezjev NV, Makeev MA. Strain-induced deformation of the porous structure in binary glasses under tensile loading. Comput Mater Sci. 2018;150:134–143.
  • Luo X, Cheng K, Guo X, et al. An investigation on the mechanics of nanometric cutting and the development of its test-bed. Int J Prod Res. 2010;41:1449–1465.
  • Sun X, Cheng K. Multi-scale simulation of the nano-metric cutting process. Int J Adv Manuf Technol. 2009;47:891–901.
  • Yuan F, Huang L. Molecular dynamics simulation of amorphous silica under uniaxial tension: from bulk to nanowire. J Non Cryst Solids. 2012;358:3481–3487.
  • Pedone A. Properties calculations of silica-based glasses by atomistic simulations techniques a review. J Phys Chem C. 2009;113:20773–20784.
  • Zhang C, Duan F, Liu Q. Size effects on the fracture behavior of amorphous silica nanowires. Comput Mater Sci. 2015;99:138–144.
  • Luo J, Wang J, Bitzek E, et al. Size-dependent brittle-to-ductile transition in silica glass nanofibers. Nano Lett. 2016;16:105–113.
  • Vollmayr K, Kob W, Binder K. Cooling-rate effects in amorphous silica: a computer-simulation study. Phys Rev B. 1996;54:15808–15827.
  • Lane JM. Cooling rate and stress relaxation in silica melts and glasses via microsecond molecular dynamics. Phys Rev E. 2015;92:012320.
  • Agnello G, Cormack AN. Coordination state and defect evolution in vitreous silica structures formed using molecular dynamics under variable cooling conditions. J Non Cryst Solids. 2016;451:146–152.
  • Carre A, Berthier L, Horbach J, et al. Amorphous silica modeled with truncated and screened Coulomb interactions: a molecular dynamics simulation study. J Chem Phys. 2007;127:114512.
  • Sundararaman S, Ching W-Y, Huang L. Mechanical properties of silica glass predicted by a pair-wise potential in molecular dynamics simulations. J Non Cryst Solids. 2016;445–446:102–109.
  • Muralidharan K, Simmons JH, Deymier PA, et al. Molecular dynamics studies of brittle fracture in vitreous silica: review and recent progress. J Non Cryst Solids. 2005;351:1532–1542.
  • Bidault X, Chaussedent S, Blanc W, et al. Deformation of silica glass studied by molecular dynamics: structural origin of the anisotropy and non-Newtonian behavior. J Non Cryst Solids. 2016;443:38–44.
  • Ghemid S, Monteil A, Guichaoua D. Orientation of silica rings under uniaxial stress in simulated vitreous silica. Comput Mater Sci. 2007;39:552–556.
  • Jiang J, Yan Y, Hou D, et al. Understanding of deformation mechanism and mechanical characteristics of cementitious mineral analogues from first principles and reactive force field molecular dynamics. Phys Chem Chem Phys. 2018;20(20):13920–13933.
  • Mantisi B, Tanguy A, Kermouche G, et al. Atomistic response of a model silica glass under shear and pressure. Eur Phys J B. 2012;85(9):304.
  • Kilymis DA, Delaye JM. Nanoindentation of pristine and disordered silica: molecular dynamics simulations. J Non Cryst Solids. 2013;382:87–94.
  • Guo X, Zhai C, Kang R, et al. The mechanical properties of the scratched surface for silica glass by molecular dynamics simulation. J Non Cryst Solids. 2015;420:1–6.
  • Yoshida S, Sanglebœuf J-C, Rouxel T. Quantitative evaluation of indentation-induced densification in glass. J Mater Res. 2005;20:3404–3412.
  • Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117:1–19.
  • Stukowski A. Visualization and analysis of atomistic simulation data with OVITO – the open visualization tool. Modell Simul Mater Sci Eng. 2010;18(1):015012.
  • van Beest BW, Kramer GJ, van Santen RA. Force fields for silicas and aluminophosphates based on ab initio calculations. Phys Rev Lett. 1990;64:1955–1958.
  • Tse JS, Klug DD. The structure and dynamics of silica polymorphs using a two-body effective potential model. J Chem Phys. 1991;95:9176–9185.
  • van Duin ACT, Strachan A, Stewman S, et al. ReaxFFSiO reactive force field for silicon and silicon oxide systems. J Phys Chem A. 2003;107:3803–3811.
  • Munetoh S, Motooka T, Moriguchi K, et al. Interatomic potential for Si–O systems using Tersoff parameterization. Comput Mater Sci. 2007;39:334–339.
  • Gonçalves W, Morthomas J, Chantrenne P, et al. Molecular dynamics simulations of amorphous silica surface properties with truncated Coulomb interactions. J Non Cryst Solids. 2016;447:1–8.
  • Fennell CJ, Gezelter JD. Is the Ewald summation still necessary? Pairwise alternatives to the accepted standard for long-range electrostatics. J Chem Phys. 2006;124:234104.
  • Kim WK, Kim BH. A molecular dynamics study on atomistic mechanisms of nano-scale cutting process of sapphire. J Mech Sci Technol. 2017;31:4353–4362.
  • Nosé S. A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys. 1984;81:511–519.
  • Mylvaganam K, Zhang LC. Nanotwinning in monocrystalline silicon upon nanoscratching. Scr Mater. 2011;65:214–216.
  • Nosé S. A molecular dynamics method for simulations in the canonical ensemble. Mol Phys. 1984;52:255–268.
  • Shinoda W, Shiga M, Mikami M. Rapid estimation of elastic constants by molecular dynamics simulation under constant stress. Phys Rev B. 2004;69(13):134103.
  • Liu B, Xu Z, Chen C, et al. Effect of tool edge radius on material removal mechanism of single-crystal silicon: numerical and experimental study. Comput Mater Sci. 2019;163:127–133.
  • Zhu P-Z, Qiu C, Fang F-Z, et al. Molecular dynamics simulations of nanometric cutting mechanisms of amorphous alloy. Appl Surf Sci. 2014;317:432–442.
  • Wu C-D, Fang T-H, Su J-K. Nanometric mechanical cutting of metallic glass investigated using atomistic simulation. Appl Surf Sci. 2017;396:319–326.
  • Chen YC, Lu Z, Nomura K, et al. Interaction of voids and nanoductility in silica glass. Phys Rev Lett. 2007;99:155506.
  • Yuan X, Cormack AN. Efficient algorithm for primitive ring statistics in topological networks. Comput Mater Sci. 2002;24:343–360.
  • Niu Z, Jiao F, Cheng K. An innovative investigation on chip formation mechanisms in micro-milling using natural diamond and tungsten carbide tools. J Manuf Process. 2018;31:382–394.
  • Chavoshi SZ, Luo X. An atomistic simulation investigation on chip related phenomena in nanometric cutting of single crystal silicon at elevated temperatures. Comput Mater Sci. 2016;113:1–10.
  • Chavoshi SZ, Goel S, Luo X. Molecular dynamics simulation investigation on the plastic flow behaviour of silicon during nanometric cutting. Modell Simul Mater Sci Eng. 2015;24(1):015002.
  • Wang J, Zhang X, Fang F, et al. A numerical study on the material removal and phase transformation in the nanometric cutting of silicon. Appl Surf Sci. 2018;455:608–615.
  • Xu F, Fang F, Zhang X. Effects of recovery and side flow on surface generation in nano-cutting of single crystal silicon. Comput Mater Sci. 2018;143:133–142.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.