401
Views
4
CrossRef citations to date
0
Altmetric
Articles

Optical properties enhancement of buckled Bismuthene in mid-infrared region: a theoretical first-principle study

, , , &
Pages 1004-1010 | Received 29 Feb 2020, Accepted 13 Jul 2020, Published online: 26 Jul 2020

References

  • Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666–669.
  • Özcelik V O, Aktürk O Ü, Durgun E, et al. Prediction of a two-dimensional crystalline structure of nitrogen atoms. Phys Rev B. 2015;92(12):125420.
  • Liu H, Neal A T, Zhu Z, et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano. 2014;8(4):4033–4041.
  • Kamal C, Ezawa M. Arsenene: two-dimensional buckled and puckered honeycomb arsenic systems. Phys Rev B. 2015;91(8):085423.
  • Zhang S, Yan Z, Li Y, et al. Atomically thin arsenene and antimonene: semimetal–semiconductor and indirect–direct band-gap transitions. Angew Chem Int Ed. 2015;54(10):3112–3115.
  • Pumera M, Sofer Z. 2D monoelemental arsenene, antimonene, and bismuthene: beyond black phosphorus. Adv Mater. 2017;29(21):1605299.
  • Kadioglu Y, Kilic S B, Demirci S, et al. Modification of electronic structure, magnetic structure, and topological phase of bismuthene by point defects. Phys Rev B. 2017;96(24):245424.
  • Zhang S, Guo S, Chen Z, et al. Recent progress in 2D group-VA semiconductors: from theory to experiment. Chem Soc Rev. 2018;47(3):982–1021.
  • Liu C C, Jiang H, Yao Y. Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin. Phys Rev B. 2011;84(19):195430.
  • Schriver K E, Persson J L, Honea E C, et al. Electronic shell structure of group-IIIA metal atomic clusters. Phys Rev Lett. 1990;64(21):2539–2542.
  • Huang W, Gan L, Li H, et al. 2D layered group IIIA metal chalcogenides: synthesis, properties and applications in electronics and optoelectronics. CrystEngComm. 2016;18(22):3968–3984.
  • Zhang S, Xie M, Li F, et al. Semiconducting group 15 monolayers: a broad range of band gaps and high carrier mobilities. Angew Chem Int Ed. 2016;55(5):1666–1669.
  • Rashba E I. Symmetry of energy bands in crystals of wurtzite type. 1. Symmetry of bands disregarding spin-orbit interaction. Sov Phys Solid State. 1959;1(3):368–380.
  • Aktürk E, Aktürk O Ü, Ciraci S. Single and bilayer bismuthene: stability at high temperature and mechanical and electronic properties. Phys Rev B. 2016;94(1):014115.
  • Blöchl PE. Projector augmented-wave method. Phys Rev B. 1994;50(24):17953.
  • Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996;54(16):11169–11186.
  • Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(18):3865–3868.
  • Grimme S, Antony J, Ehrlich S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys. 2010;132(15):154104.
  • Liu M Y, Huang Y, Chen Q Y, et al. Strain and electric field tunable electronic structure of buckled bismuthene. RSC Adv. 2017;7(63):39546–39555.
  • Yao M Y, Zhu F, Han C Q, et al. Topologically nontrivial bismuth (111) thin films. Sci Rep. 2016;6:21326.
  • Takayama A, Sato T, Souma S, et al. Anomalous Rashba effect of bismuth (111) thin films studied by high-resolution spin-and angle-resolved photoemission spectroscopy. J Vac Sci Technol B. 2012;30(4):107.
  • Kittel C. Introduction to solid state physics. New York: Wiley; 1976.
  • Pearson RG. Concerning Jahn-Teller effects. Proc Natl Acad Sci. 1975;72(6):2104–2106.
  • Ersan F, Aktürk E, Ciraci S. Interaction of adatoms and molecules with single-layer arsenene phases. J Phys Chem C. 2016;120(26):14345–14355.
  • Stranks S D, Plochocka P. The influence of the Rashba effect. Nat Mater. 2018;17(5):381–382.
  • Kou L, Tan X, Ma Y, et al. Tetragonal bismuth bilayer: a stable and robust quantum spin hall insulator. 2D Mater. 2015;2(4):045010.
  • Murakami S. Quantum spin Hall effect and enhanced magnetic response by spin-orbit coupling. Phys Rev Lett. 2006;97(23):236805.
  • Liu Z, Liu C X, Wu Y S, et al. Stable nontrivial Z2 topology in ultrathin Bi (111) films: a first-principles study. Phys Rev Lett. 2011;107(13):136805.
  • Ghosh B, Singh B, Prasad R, et al. Electric-field tunable Dirac semimetal state in phosphorene thin films. Phys Rev B. 2016;94(20):205426.
  • Pikus GL, Bir GE. Symmetry and strain-induced effects in semiconductors. Neurobiol Aging. 1974;37(04):S274.
  • Bardeen J, Shockley W. Deformation potentials and mobilities in non-polar crystals. Phys Rev. 1950;80(1):72–80.
  • Herring C, Vogt E. Transport and deformation-potential theory for Many-Valley semiconductors with anisotropic scattering. Phys Rev. 1957;101(6):944–961.
  • Sun Z, Chu H, Li Y, et al. Theoretical investigation on electronic and optical properties of the graphene-MoSe2-graphene sandwich heterostructure. Mater Design. 2019;183:108129.
  • Bafekry A, Stampfl C, Ghergherehchi M, et al. A first-principles study of the effects of atom impurities, defects, strain, electric field and layer thickness on the electronic and magnetic properties of the C2N nanosheet. Carbon. 2019;157:371–384.
  • Bafekry A, Neek-Amal M, Peeters F M. Two-dimensional graphitic carbon nitrides: strain-tunable ferromagnetic ordering. Phys Rev B. 2020;101(16):165407.
  • Bafekry A, Stampfl C, Peeters FM. The electronic, optical, and thermoelectric properties of monolayer PbTe and the tunability of the electronic structure by external fields and defects. Phys Status Solid. 2020;257:2000182.
  • Bafekry A, Akgenc B, Ghergherehchi M, et al. Strain and electric field tuning of semi-metallic character WCrCO2 MXenes with dual narrow band gap. J Phys Condens Matter. 2020;32(35):355504.
  • Popescu V, Zunger A. Effective band structure of random alloys. Phys Rev Lett. 2010;104(23):236403.
  • Popescu V, Zunger A. Extracting E versus k effective band structure from supercell calculations on alloys and impurities. Phys Rev B. 2012;85(8):085201.
  • Bafekry A, Stampfl C, Ghergherehchi M. Strain, electric-field and functionalization induced widely tunable electronic properties in MoS2/BC3, /C3N and /C3N4 van der Waals heterostructures. Nanotechnology. 2020;31(29):295202.
  • Bafekry A, Yagmurcukardes M, Akgenc B, et al. Van der Waals heterostructures of MoS2 and Janus MoSSe monolayers on graphitic boron-carbon-nitride (BC3, C3N, C3N4 and C4N3) nanosheets: a first-principles study. J Phys D Appl Phys. 2020;53(35):355106.
  • Bafekry A, Ghergherehchi M, Shayesteh S F. Tuning the electronic and magnetic properties of antimonene nanosheets via point defects and external fields: first-principles calculations. Phys Chem Chem Phys. 2019;21(20):10552–10566.
  • Bafekry A. Graphene-like BC6N single-layer: tunable electronic and magnetic properties via thickness, gating, topological defects, and adatom/molecule. Phys E Low Dimens Syst Nanostruct. 2020;118:113850.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.