480
Views
8
CrossRef citations to date
0
Altmetric
Articles

Lithium and sodium ion binding in nanostructured carbon composites

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 878-887 | Received 29 Feb 2020, Accepted 13 Jul 2020, Published online: 11 Aug 2020

References

  • Ganesh P, Kim J, Park C, et al. Binding and diffusion of lithium in graphite: quantum Monte Carlo benchmarks and validation of van der waals density functional methods. J Chem Theory Comput. 2014 Dec 9;10(12):5318–5323.
  • Meng YS, Arroyo-de Dompablo ME. First principles computational materials design for energy storage. Energy Environ Sci. 2009;2(6).):589–609.
  • Senftle TP, Hong S, Islam MM, et al. The ReaxFF reactive force-field: development, applications and future directions. NPJ Computational Materials. 2016;2(1):15011, 1–14.
  • Raju M, Ganesh P, Kent PR, et al. Reactive force field study of Li/C systems for electrical energy storage. J Chem Theory Comput. 2015 May 12;11(5):2156–2166.
  • van Duin ACT, Dasgupta S, Lorant F, et al. ReaxFF: a reactive force field for hydrocarbons. J Phys Chem A. 2001 Oct;105(41):9396–9409.
  • Li Y, Lu Y, Adelhelm P, et al. Intercalation chemistry of graphite: alkali metal ions and beyond. Chem Soc Rev. 2019 Aug 27;48(17):4655–4687.
  • Okamoto Y. Density functional theory calculations of Alkali metal (Li, Na, and K) graphite intercalation compounds. J Phys Chem C. 2014 Jan;118(1):16–19.
  • Wan W, Wang HD. Study on the first-principles calculations of graphite intercalated by Alkali metal (Li, Na, K). Int J Electrochem Sci. 2015 Apr;10(4):3177–3184.
  • Dahbi M, Yabuuchi N, Kubota K, et al. Negative electrodes for Na-ion batteries. Phys Chem Chem Phys. 2014;16(29):15007–15028.
  • Yabuuchi N, Kubota K, Dahbi M, et al. Research development on sodium-Ion batteries. Chem Rev. 2014 Dec;114(23):11636–11682.
  • Hossain S, Saleh Y, Loutfy R. Carbon-carbon composite as anodes for lithium-ion battery systems. J Power Sources. 2001 Jun;96(1):5–13.
  • Tenhaeff WE, Rios O, More K, et al. Highly Robust lithium ion battery anodes from lignin: an abundant, renewable, and low-cost material. Adv Funct Mater. 2014 Jan;24(1):86–94.
  • García-Negrón V, Phillip ND, Li J, et al. Processing-structure-property relationships for lignin-based carbonaceous materials used in energy-storage applications. Energy Technol. 2017;5(8):1311–1321.
  • Daniel C. Materials and processing for lithium-ion batteries. JOM. 2008 Sep;60(9):43–48.
  • McNutt NW, Rios O, Feygenson M, et al. Structural analysis of lignin-derived carbon composite anodes. J Appl Crystallogr. 2014;47(5):1577–1584.
  • García-Negrón V, Kizzire DG, Rios O, et al. Elucidating nano and meso-structures of lignin carbon composites: a comprehensive study of feedstock and temperature dependence. Carbon NY. 2020;161:856–869.
  • Liu P, Wu HQ. Diffusion of lithium in carbon. Solid State Ion. 1996 Nov;92(1–2):91–97.
  • Noel M, Suryanarayanan V. Role of carbon host lattices in Li-ion intercalation/de-intercalation processes. J Power Sources. 2002 Sep;111(2):193–209.
  • Winter M, Novak P, Monnier A. Graphites for lithium-ion cells: the correlation of the first-cycle charge loss with the Brunauer-Emmett-Teller surface area. J Electrochem Soc. 1998 Feb;145(2):428–436.
  • Chatterjee S, Clingenpeel A, McKenna A, et al. Synthesis and characterization of lignin-based carbon materials with tunable microstructure. RSC Adv. 2014;4(9):4743–4753.
  • Hasegawa M, Nishidate K, Iyetomi H. Energetics of interlayer binding in graphite: the semiempirical approach revisited. Phys Rev B. 2007;76(11):115424, 1–8.
  • Lebedeva IV, Knizhnik AA, Popov AM, et al. Interlayer interaction and relative vibrations of bilayer graphene. Phys Chem Chem Phys. 2011;13(13):5687–5695.
  • Rai A, Warrier M, Schneider R. A hierarchical multi-scale method to simulate reactive-diffusive transport in porous media. Comput Mater Sci. 2009 Aug;46(2):469–478.
  • Tsai JL, Tu JF. Characterizing mechanical properties of graphite using molecular dynamics simulation. Mater Des. 2010 Jan;31(1):194–199.
  • Dou XW, Hasa I, Saurel D, et al. Hard carbons for sodium-ion batteries: structure, analysis, sustainability, and electrochemistry. Mater Today. 2019 Mar;23:87–104.
  • McNutt NW, McDonnell M, Rios O, et al. Li-Ion localization and energetics as a function of anode structure. ACS Appl Mater Interfaces. 2017 Mar 1;9(8):6988–7002.
  • Hjertenaes E, Nguyen AQ, Koch H. A ReaxFF force field for sodium intrusion in graphitic cathodes. Phys Chem Chem Phys. 2016 Nov 23;18(46):31431–31440.
  • McNutt NW, Wang Q, Rios O, et al. Entropy-driven structure and dynamics in carbon nanocrystallites. J Nanopart Res. 2014;16(4):2365–2372.
  • Plimpton S. Fast parallel algorithms for short-range molecular-dynamics. J Comput Phys. 1995 Mar;117(1):1–19.
  • McNutt NW, Rios O, Maroulas V, et al. Interfacial Li-ion localization in hierarchical carbon anodes. Carbon NY. 2017;111:828–834.
  • Kim H, Hong J, Yoon G, et al. Sodium intercalation chemistry in graphite. Energy Environ Sci. 2015;8(10):2963–2969.
  • Barrera GD, Colognesi D, Mitchell PCH, et al. LDA or GGA? A combined experimental inelastic neutron scattering and ab initio lattice dynamics study of alkali metal hydrides. Chem Phys. 2005 Oct;317(2–3):119–129.
  • Berliner R, Fajen O, Smith HG, et al. Neutron powder-diffraction studies of lithium, sodium, and potassium metal. Phys Rev B. 1989 Dec;40(18):12086–12097.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.