120
Views
0
CrossRef citations to date
0
Altmetric
Articles

A density functional theory evaluation on silicon doped boron nitride nanocones: ibuprofen drug sensing characterisation

, , , &
Pages 1164-1171 | Received 08 Apr 2020, Accepted 30 Jul 2020, Published online: 19 Aug 2020

References

  • Marsik P, Rezek J, Židková M, et al. Non-steroidal anti-inflammatory drugs in the watercourses of Elbe basin in Czech Republic. Chemosphere. 2017;171:97–105. doi: 10.1016/j.chemosphere.2016.12.055
  • Aranda JV, Salomone F, Valencia GB, et al. Non-steroidal anti-inflammatory drugs in newborns and infants. Pediatr Clin. 2017;64:1327–1340.
  • Simmons DL, Wagner D, Westover K. Nonsteroidal anti-inflammatory drugs, acetaminophen, cyclooxygenase 2, and fever. Clin Infect Dis. 2000;31:211–218. doi: 10.1086/317517
  • Sözen H, Gönen I, Sözen A, et al. Application of ATC/DDD methodology to eveluate of antibiotic use in a general hospital in Turkey. Ann Clin Microbiol Antimicrob. 2013;12:23–29. doi: 10.1186/1476-0711-12-23
  • Rezaeifar Z, Es’haghi Z, Rounaghi GH, et al. Hyperbranched polyglycerol/graphene oxide nanocomposite reinforced hollow fiber solid/liquid phase microextraction for measurement of ibuprofen and naproxen in hair and waste water samples. J Chromatogr B. 2016;1029:81–87. doi: 10.1016/j.jchromb.2016.07.010
  • Madikizela LM, Chimuka L. Determination of ibuprofen, naproxen and diclofenac in aqueous samples using a multi-template molecularly imprinted polymer as selective adsorbent for solid-phase extraction. J Pharm Biomed Anal. 2016;128:210–215. doi: 10.1016/j.jpba.2016.05.037
  • Racamonde I, Rodil R, Quintana JB, et al. Fabric phase sorptive extraction: a new sorptive microextraction technique for the determination of non-steroidal anti-inflammatory drugs from environmental water samples. Anal Chim Acta. 2015;865:22–30. doi: 10.1016/j.aca.2015.01.036
  • Kubáň P, Boček P. Simultaneous micro-electromembrane extractions of anions and cations using multiple free liquid membranes and acceptor solutions. Anal Chim Acta. 2016;908:113–120. doi: 10.1016/j.aca.2016.01.007
  • Švorc Ľ, Strežová I, Kianičková K, et al. An advanced approach for electrochemical sensing of ibuprofen in pharmaceuticals and human urine samples using a bare boron-doped diamond electrode. J Electroanal Chem. 2018;822:144–152. doi: 10.1016/j.jelechem.2018.05.026
  • Hibino H, Kageshima H, Kotsugi M, et al. Dependence of electronic properties of epitaxial few-layer graphene on the number of layers investigated by photoelectron emission microscopy. Phys Rev B. 2009;79:125437. doi: 10.1103/PhysRevB.79.125437
  • Lee C, Yan H, Brus LE, et al. Anomalous lattice vibrations of single-and few-layer MoS2. ACS Nano. 2010;4:2695–2700. doi: 10.1021/nn1003937
  • Hoshino A, Fujioka K, Oku T, et al. Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett. 2004;4:2163–2169. doi: 10.1021/nl048715d
  • Hubbell JA, Chilkoti A. Nanomaterials for drug delivery. Science. 2012;337:303–305. doi: 10.1126/science.1219657
  • Shakir M, Nadeem M, Shahid S, et al. Topical review: carbon nanotube electric field emitters and applications. Nanotechnology. 2006;17:41. doi: 10.1088/0957-4484/17/6/R01
  • Cumings J, Zettl A. Field emission and current-voltage properties of boron nitride nanotubes. Solid State Commun. 2004;129:661–664. doi: 10.1016/j.ssc.2003.11.026
  • Fowler RH, Nordheim L. Electron emission in intense electric fields. Proc R Soc Lond A Math Phys Eng Sci. 1928;119:173–181.
  • Azevedo S, Mazzoni MS, Chacham H, et al. Electron states in boron nitride nanocones. Appl Phys Lett. 2003;82:2323–2325. doi: 10.1063/1.1565701
  • Azevedo S, Mazzoni MS, Nunes RW, et al. Stability of antiphase line defects in nanometer-sized boron nitride cones. Phys Rev B. 2004;70:205412. doi: 10.1103/PhysRevB.70.205412
  • Oku T, Narita I, Koi N, et al. Boron nitride nanocage clusters, nanotubes, nanohorns, nanoparticles, and nanocapsules. In: Yap YK, editor. BCN nanotubes and related nanostructures. Vol. 12. New York: Springer; 2009. p. 149–194.
  • Lindsay R. Daily archives: April 14; 2014.
  • Goldberg D, Bando Y, Eremets M, et al. Boron nitride nanotube growth defects and their annealing-out under electron irradiation. Chem Phys Lett. 1997;279:191–196. doi: 10.1016/S0009-2614(97)00962-7
  • Qu C, Qiao L, Wang C, et al. First-principles density-functional calculations on the field emission properties of BN nanocones. Solid State Commun. 2008;146:399–402. doi: 10.1016/j.ssc.2008.03.030
  • Bux SK, Blair RG, Gogna PK, et al. Nanostructured bulk silicon as an effective thermoelectric material. Adv Funct Mater. 2009;19:2445–2452. doi: 10.1002/adfm.200900250
  • Tang Y, Liu Z, Dai X, et al. Theoretical study on the Si-doped graphene as an efficient metal-free catalyst for CO oxidation. Appl Surf Sci. 2014;308:402–407. doi: 10.1016/j.apsusc.2014.04.189
  • Campos-Delgado J, Maciel IO, Cullen DA, et al. Chemical vapor deposition synthesis of N-, P-, and Si-doped single-walled carbon nanotubes. ACS Nano. 2010;4:1696–1702. doi: 10.1021/nn901599g
  • Cho JH, Yang SJ, Lee K, et al. Si-doping effect on the enhanced hydrogen storage of single walled carbon nanotubes and graphene. Int J Hydrogen Energy. 2011;36:12286–12295. doi: 10.1016/j.ijhydene.2011.06.110
  • Wang R, Zhu R, Zhang D. Adsorption of formaldehyde molecule on the pristine and silicon-doped boron nitride nanotubes. Chem Phys Lett. 2008;467:131–135. doi: 10.1016/j.cplett.2008.11.002
  • Wang R, Zhang D, Zhang Y, et al. Boron-doped carbon nanotubes serving as a novel chemical sensor for formaldehyde. J Phys Chem B. 2006;110:18267–18271. doi: 10.1021/jp061766+
  • Soltani A, Raz SG, Rezaei VJ, et al. Ab initio investigation of Al-and Ga-doped single-walled boron nitride nanotubes as ammonia sensor. Appl Surf Sci. 2012;263:619–625. doi: 10.1016/j.apsusc.2012.09.122
  • Denis PA. Band gap opening of monolayer and bilayer graphene doped with aluminium, silicon, phosphorus, and sulfur. Chem Phys Lett. 2010;492:251–257. doi: 10.1016/j.cplett.2010.04.038
  • Esrafili MD, Saeidi N, Nematollahi P. Si-doped graphene: a promising metal-free catalyst for oxidation of SO2. Chem Phys Lett. 2016;649:37–43. doi: 10.1016/j.cplett.2016.02.028
  • Schmidt MW, Baldridge KK, Boatz JA, et al. General atomic and molecular electronic structure system. J Comput Chem. 1993;14:1347–1363. doi: 10.1002/jcc.540141112
  • Beheshtian J, Peyghan AA, Bagheri Z. Detection of phosgene by Sc-doped BN nanotubes: a DFT study. Sens Actuators B Chem. 2012;171:846–852. doi: 10.1016/j.snb.2012.05.082
  • Abdulsattar MA. Sige superlattice nanocrystal pure and doped with substitutional phosphorus single atom: density functional theory study. Superlattices Microstruct. 2011;50:377–385. doi: 10.1016/j.spmi.2011.07.017
  • Tomić S, Montanari B, Harrison N. The group III–V’s semiconductor energy gaps predicted using the B3LYP hybrid functional. Phys E Low-Dimens Syst Nanostructures. 2008;40:2125–2127. doi: 10.1016/j.physe.2007.10.022
  • O’Boyle NM, Tenderholt AL, Langer KM. A library for package-independent computational chemistry algorithms. J Comput Chem. 2008;29:839. doi: 10.1002/jcc.20823
  • Ahmadi Peyghan A, Hadipour NL, Bagheri Z. Effects of Al doping and double-antisite defect on the adsorption of HCN on a BC2N nanotube: density functional theory studies. J Phys Chem C. 2013;117:2427–2432. doi: 10.1021/jp312503h
  • Sharma AK, Gupta BD. On the sensitivity and signal to noise ratio of a step-index fiber optic surface plasmon resonance sensor with bimetallic layers. Opt Commun. 2005;245:159–169. doi: 10.1016/j.optcom.2004.10.013
  • Sun J, Ye B, Xia G, et al. A colorimetric and fluorescent chemosensor for the highly sensitive detection of CO2 gas: experiment and DFT calculation. Sens Actuators B Chem. 2016;233:76–82. doi: 10.1016/j.snb.2016.04.052
  • Korotcenkov G. Handbook of gas sensor materials. In: Potyrailo RA, editor. Conventional approaches. Vol. 1. New York: Springer; 2013.
  • Richardson O. Electron emission from metals as a function of temperature. Phys Rev. 1924;23:153. doi: 10.1103/PhysRev.23.153
  • Hadipour NL, Ahmadi Peyghan A, Soleymanabadi H. Theoretical study on the Al-doped ZnO nanoclusters for CO chemical sensors. J Phys Chem C. 2015;119:6398–6404. doi: 10.1021/jp513019z

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.